
Embedding Meta-Information in Handwriting —

Reed-Solomon for Reliable Error Correction

Marcus Liwicki∗†, Seiichi Uchida∗, Masakazu Iwamura‡, Shinichiro Omachi§ and Koichi Kise‡

∗Kyushu University, Japan

Email: uchida@ait.kyushu-u.ac.jp

†DFKI, Germany

Email: marcus.liwicki@dfki.de

‡Osaka Prefecture Univ., Japan

§Tohoku Univ., Japan

Abstract

In this paper a more compact and more reliable

coding scheme for the data-embedding pen is pro-

posed. The data-embedding pen produces an addi-

tional ink-dot sequence along a handwritten pattern

during writing. The ink-dot sequence represents, for

example, meta-information (such as the writer’s name

and the date of writing) and thus drastically increases

the value of the handwriting on a physical paper. There

is no need to get access to any memory on the pen to

recover the information, which is especially useful in

multi-writer or multi-pen scenarios. In this paper we

focus on the compactness of the encoded information.

The aim of this paper is to encode as much information

as possible in short stroke sequences. In our experi-

ments we show that we can embed more information

in shorter strokes than in previous work. In straight

lines as short as 5 cm, 32 bits can successfully be

embedded. Furthermore, the new encoding scheme also

works reliably on more complex patterns.

I.. Introduction

Handwriting is an important modality for writing

down information, making annotations, or just marking

items. Unfortunately, as soon as the ink is on the paper,

many information known during writing is already

lost. We cannot access meta-information about the

handwritten pattern from itself; it is impossible to

retrieve who wrote this pattern or when it was written.

In other words, a handwritten pattern on a physical

paper is just an ink pattern and thus cannot provide

any information but its shape.

Digital pens have emerged as a choice to store and

retrieve such meta-information — unfortunately, they

cannot increase the value of handwriting on paper

either. Several digital pens capturing handwriting on

normal paper have been developed and those pens can

store the stroke sequences on a computer along with

meta-information. However, the handwriting left on the

paper is still just an ink pattern without any meta-

information.

In this paper, we work with a novel pen device

which enriches handwriting on physical paper. The

pen device, called data-embedding pen, can embed

arbitrary information (such as meta-information) by an

additional ink-dot sequence along the ink stroke of the

handwriting. Each ink-dot represents an information bit

and thus an ink-dot sequence represents a bit-stream

of the information to be embedded.

While we have introduced the data-embedding pen

very recently [1], the work presented in this paper adds

significant scientific value. In [1] we mainly focused on

the feasibility of encoding meta information. There we

have investigated the influence of several parameters,

like the sampling rate and the length of the code units,

to the coding reliability. For error correction, row- and

column-wise parity bits were chosen, and finally, about

Figure 1. The data-embedding pen.

21 bit of information could be successfully recovered

from simple handwritten patterns. In this paper we

propose the use of Reed-Solomon error correction and

present a way of applying it to the ink-dot sequences.

In our experiments we can successfully encode more

than 30 bit of information in even shorter sequences.

Additionally, the new encoding scheme works suc-

cessfully on more complex patterns like words and

signatures, where the previous approach usually failed.

II. The Data-Embedding Pen

The data-embedding pen is a device which com-

prises a usual ballpoint pen and an ink-jet nozzle

element. Figure 1 depicts this device. The main casing

is used as a channel for the nozzle (right side in Fig. 1)

and side-channel is used for the ballpoint pen (left side

in Fig. 1). During the writing, the nozzle produces

small ink-dots alongside the handwritten stroke. The

color of the ink-dots is different from the color of

the stroke. In this paper, yellow is used for the ink-

dots. (Invisible ink has already been tested as a good

alternative.) The number of the ink-dots and their

timing are used to encode the desired information.

The nozzle is able to generate up to 2, 000 ink-dots

per second. Using this high frequency, we can form

a connected line by a sequence of several ink-dots.

Hereafter, a line by n sequential ink-dots is called n-

pulse line. If n = 1, the n-pulse line forms a single ink-

dot. The line, of course, becomes longer by increasing

n.

III.. Information Embedding

Our coding scheme is based on the combination of

three different n-pulse lines. Specifically, we use n = 1
(a dot), 5 (a short line), and 20 (a long line). The

(a)

(b)

Figure 2. (a) Ink-dots (light) nearby a

handwriting stroke (black). (b) After image

processing.

ink-dot sequence of Fig. 2 consists of those n-pulse

lines. Roughly speaking, the information is converted

into a binary (0 and 1) sequence and embedded by

using the 1-pulse line as 0 and the 5-pulse line as 1. A

short pause is prepared between each bit information

(1-pulse or 5-pulse line) like in the Morse code. The

20-pulse line, hereafter called synchronization blob, is

used as an anchor to make sure that a correct position

is extracted (see the leftmost dot in Fig. 2).

Our coding scheme is defined by three units, called

frame, block, and bit. (This naming is motivated by the

terminology of network protocol design.) The bit is the

smallest unit and defined by a 1-pulse line or a 5-pulse

line. Several consecutive bits comprises a block and

several consecutive blocks comprises a frame. A pause

which is longer than the pause between bits is inserted

between two consecutive blocks. Each frame begins

(or, equivalently, ends) at a synchronization blob.

Figure 2 is an example of a single frame. From

left to right, the ink-dot sequence of the frame is

comprised of a synchronization blob, 6 blocks, and

another synchronization blob. In each block, 4 bits are

encoded and thus in the frame 24 bits (0110− 1010−
1010− 1010− 0000− 1100) are embedded.

The main parameters of the coding scheme are the

number of bits per block (bB) and the number of

blocks per frame (bF). Accordingly, the number of

bits per frame becomes bF × bB. In the example of

Fig. 2, bF = 6 and bB = 4.

Another important parameter, which is the main

focus of this paper, is the method for correcting errors

which eventually occur during embedding the informa-

tion. More details about this issue follow in Section V.

IV. Information Recovery

A. Image Processing

Information recovery begins with image processing

which extracts ink-dots and black ink strokes from a

scanned image. In the this section, four steps of image

processing are explained using Fig. 4 (a), which is an

intersection part of Figure 3.

(a) (b) (c)

(d)
(e)

(f)

Figure 4. Image processing on an intersection part of Fig. 3. See text for details.

Figure 3. Two loops with ink-dots.

The first step of ink-dot extraction is a simple

thresholding operation to extract the black ink stroke

and yellow ink-dots. The second step is noise removal

because the black ink stroke image extracted includes

many noisy pixels, as shown in Fig. 4 (b). Thus,

erosion and dilation are applied. Figure 4 (c) shows

the result. Similar operations are also applied to the

ink-dot image (Fig. 4 (d)). Note that the parameters for

those operations can be optimized on a small training

set.

The third step is a special treatment of ink-dots

occluded by the black ink stroke. Fortunately, those

yellow ink-dots are still visible on the stroke (they just

appear to be a bit darker). Thus, after extracting the

pixels of the black ink stroke, another thresholding

operation is performed on those pixels with a lower

threshold to recover dark yellow ink-dots. In the fol-

lowing experiments it turned out that about 50% of

those dots could be recovered by this approach.

The fourth step is a thinning operation on the black

ink stroke. Figure 4 (d) shows the result of an orthodox

thinning method. Then, after removing many small

loops and short spurious edges by unifying neighboring

branches, the final thinning result is obtained as shown

in Fig. 4 (e).

B. Aligning Ink-Dots by Stroke Recovery

In order to decode the ink-dots, they should be

aligned according to their original temporal order.

Since this order is lost in the scanned image, we

must estimate it by using the result of stroke recov-

ery. Specifically speaking, after recovering the writing

order of the black ink stroke based on the algorithm

presented in [2] and establishing the correspondence

between the ink-dots and the stroke, we align the ink-

dots.

The basic idea of establishing the correspondence

as shown in Fig. 4 (f) is to find the closest point on

the stroke for each ink-dot. A simple nearest neighbor,

however, cannot always provide a correct result be-

cause a dot and its corresponding point might be a bit

distant due to the pen tilt. Thus, at each ink-dot k, we

first calculate the minimum distance dk,θ to the stroke

for each θ of 36 directions (with 10◦ interval). Then,

we select the direction θ with minimum variance, i.e.,

θ = argminθ Var{d1,θ, . . . , dK,θ}. This direction is

the most stable direction and thus represents the pen

tilt. Finally, for each ink-dot k, the corresponding point

is determined as the closest point in the direction θ.

C. Data Decoding

For decoding, the bit information (i.e., 1-pulse and

5-pulse lines and synchronization blob) is first recov-

ered at every ink-dot, just by checking its size. The

sequence is separated into frames using the synchro-

nization blobs. Larger gaps are detected within each

frame and assumed as the gaps between block.

Next, a plausibility control is performed on the

extracted data. For each block, the number of bits (bB)

is confirmed. Sometimes a block has spurious bits,

(a)

(b)

(c) (d)

Figure 5. (a) Example of a difficult pattern.
(b)–(d) Specific regions of the pattern.

resulting from a wrong mapping or just from noise. In

this case, those adjacent bits whose distance deviates

too much from the mean distance are deleted. If the

number of bits and blocks do not correspond to the

values bB and bF , the frame is rejected.

For detecting and correcting errors, the Reed-

Solomon error correction is chosen. Details follow in

the next section.

V.. Error Correction

The process of embedding the ink next to the

handwritten stroke is always accompanied with several

errors. First, the black ink sometimes overlaps with the

information ink (see Fig 5 (b)). Second, several ink-

dots might overlap at turning points or stopping points

(see Fig 5 (c)). Finally, it is impossible to recover

the correct information from double strokes (see Fig 5

(d)), since it is not known which dot belongs to which

direction.

In order to recover from the errors, some redundant

information has to be added. Simple and intuitive ideas

would be to apply repetition and parity check [1]. How-

ever, these encodings show some limitations, especially

when it comes to more complicated handwritten pat-

terns like signatures or handwritten words with many

crossings and double strokes.

In this paper we use Reed-Solomon error correc-

tion [3], [4] for reliably recovering from the occur-

ring errors. The idea is to oversample a polynomial

f(x) = a1 + a2 ∗ x1 + . . . + ak ∗ x(k−1) from the

data with more points aj than needed. This makes the

polynomial overdetermined. Therefore it is not needed

to recover all points correctly as long as enough points

are present. The only drawback of this encoding is that

the position j of each point aj needs to be known for a

reliable decoding. In this paper we design each frame

to be comprised of two blocks, the first block for the

position of the point and the second block for its value.

While the details of Reed-Solomon codes can be found

in [4], in this paper only the important parameters and

properties of this encoding scheme are given.

The first parameter of Reed-Solomon encoding is

the base m bits for the points. In this paper we have

set m = 4. This choice of this value is based on

the observation that previous experiments have shown

that shorter frames have a higher probability of being

correctly decoded. Each frame consists of 8 bit; 4 bit

for the position and 4 bit for the value.

The next parameter is the length n of the code

(including data and error correction bits). Typically

this value is set to its maximum value n = 2m − 1
(the values have to be non-zero). This code is divided

into k data points (the data to be encoded) and n− k
points for error correction. Given the k data points

a1, . . . , ak (a message to be encoded), the other values

a(k+1), . . . , an of the polynomial are determined and

all n points are encoded (sent).1

In the decoding phase, not all n points need to

be correctly recovered. Assuming that c points were

correctly recovered, s points are missing (erasures) and

e points are erroneous, the code can still be correctly

decoded if the following equation holds:

2e+ s ≤ n− k (1)

This important property makes the Reed-Solomon

codes very useful for applications where burst errors

occur. In our case usually the a whole block can be

either recognized or not, i.e., it rarely occurs that just

one bit is missing (even if only one bit is missing, we

do not know the position of the bit).

Since we encode the positions of the points in the

frame, the positions of the missing points are known

1The determination of the values is based on the primitive element
of the finite field α and finding a function f(x) for which holds

f(α(i−1)) = ai, for i = 1, . . . , k and then applying f(x) to the
remaining αi, i = k, . . . , n− 1.

before decoding. In the extreme case, up to n−k points

can be missing and still it would be possible to decode

the information correctly. In the other extreme case,

i.e., if there is no missing point, up to (n−k)/2 errors

are allowed to occur, which means for each erroneous

point, one more correct point should be at hand.

VI.. Experiments and Results

A. Data

Two sets of data-embedded handwriting were col-

lected using the current pen prototype. The first set

(Set1) contains 50 horizontal straight lines with a

length of 20 cm. All lines have been drawn with

approximately the same velocity. (Experiments with

varying velocity appear in [1].) The second set (Set2)

contains patterns which might appear in a real world

scenario, i.e., 12 “@” symbols, 12 checkmarks, 12 sim-

ulated signatures, and 12 instances of the handwritten

word “Clever”. The former two symbols have sizes of

3× 3 cm at maximum, the latter symbols have a size

of 4× 3 cm.

B. Reed-Solomon Encoding

For the Reed-Solomon encoding, the Shifra Open

Source error correcting code library was used2. We

used a Galois field polynomial of the order 4. The

code length was fixed to 15 points (24−1), each point

being a hexadecimal number (4 bit).

The aim of the experiments is to find a suit-

able value k for the number of data points. There-

fore it was varied from 1 to 15. This was achieved

by applying the following strategy. First, we set

k = 1 with a1 = 1 and computed the other val-

ues ai for this setting. The resulting code word is

1, 9, 13, 15, 14, 7, 10, 5, 11, 12, 6, 3, 8, 4, 2. If we now

set k = 2 and a2 = 9, the same values would

be estimated, and so on. This means that only the

encoding of this code is needed and during decoding

we can choose the actual value for k. This makes the

full use of all collected data, i.e., it is not needed to

write down new patterns for each value of k. Note

that using this strategy also eliminates side-effects like

more noise in some patterns, because always the same

patterns are used for the evaluation.

The code was always repeated in the data, i.e., after

reaching f15, we began with f1 again.

2Available at (2010): http://www.schifra.com/

Table I. Percentage (%) of correctly re-
covered information for Set1 (varying line

lengths)
data points (k) # bits 5 cm 10 cm

1 4 100 100
8 32 100 100
9 36 94 100

10 40 72 100
11 44 56 100
12 48 20 100
13 52 0 100
15 60 0 92

Coding scheme of [1]∗

28 50 100
56 22 46

∗ Note that for the coding scheme of [1] the amount of decoded information

is presented, e.g. 46 % means that often half of the information could be

recovered, while never all 56 bits were correctly recovered.

C. Results for Set1

In the experiments on Set1 we wanted to find out

how much information can be embedded in straight

lines. In this task only rarely some decoding errors

occur on the frame level, since there are no crossings.

(Figure 6 provides an example for the extraction result

of a 5 cm long part of a straight line where no errors

occurred.) The only problem were some overlapping

ink-dots if there was a slow pen-movement. This

happened in about 10 % of the frames. Note that these

frames were rejected during the frame decoding step

presented in Section IV-C, resulting in missing points

for the Reed-Solomon error correction.

As stated above, the straight lines had a length of

20 cm. Since the code was repeated, no errors occurred

on these long lines. We decided to measure the results

on shorter lines. Therefore we cut the line first into 10

cm parts and finally into 5 cm parts.

The results of the experiments on Set1 appear in Ta-

ble VI-C. This table shows the percentage of samples

where the information could be correctly recovered

by using the Reed-Solomon error correction. Up to a

number of k = 8 data points the codeword was always

correctly recovered even for straight lines as short as

5 cm. For larger k value, the performance decreases,

because only a limited number of frames appear in a

5 cm line. (In Fig. 6, for example, 10 points (frames)

appear.) For the length 10 cm there were only problems

if no error correction point appears, i.e., in 8 cases there

was a missing point which could not be recovered.

In the bottom of Table VI-C the decoding per-

formance for the coding scheme of [1] (parity bits

for each frame) is given. The Reed-Solomon error

correction obviously allows a more compact code. For

a length of 5 cm, the recovery rate of 28 bits (even

32 bits) is twice as high than with the parity bits. The

Figure 6. Extraction result (after thinning) of a 5 cm long line of Set1 (enlarged).

Figure 7. Example images of Set2.

Figure 8. Example of the signature Meyer.

only drawback is that Reed-Solomon codes lose all

information if not enough data points are present, while

with the previous method still parts of the data could be

correctly recovered. However, in practical applications

it is often important to recover all information.

D. Results for Set2

As stated above, Set2 consists of patterns which

might occur in practice. Examples for these patterns

are shown in Figs. 5, 7, and 8.

Table II presents the results of the experiments on

Set2. On all patterns codes of length 32 could be

correctly recovered. It is a very interesting result that

even on the more complicated patterns the correct

information could be decoded. The main reason for

unsuccessful decoding are either missing points (for

short sequences like the hook) or some errors, e.g.,

a 1-bit was interpreted as a 0-bit if it was partially

occluded by black ink (first frame of Fig 5 (b)).

VII.. Conclusions

In this paper we have presented recent results of

the research on the data-embedding pen. This pen

makes it possible to augment handwritten patterns with

meta-infomation like the time of writing, the writer

ID, and other application-dependent data. The main

idea is to encode the desired information in an ink-

dot sequence plotted nearby the writing strokes. The

hardware design as well as the methods for embedding

and recovering information have been also described.

We proposed the use of the Reed-Solomon er-

ror correction scheme for successfully encoding and

recovering the meta-information. The Reed-Solomon

correction scheme uses an overdetermined polygon

for encoding the data. During decoding only as many

Table II. Percentage (%) of correctly recov-

ered information for Set2
k # bits hook @ Meyer Clever

8 32 100 100 100 100
9 36 83 100 75 100
10 40 75 92 67 100
11 44 58 83 33 100
12 48 50 67 0 83
13 52 16 7 0 42
14 56 0 0 0 0

correct points are needed as the number of data points,

disregarding their position. The other points might be

missing. For each erroneous point one more correct

points is needed to recover from the error.

In our experiments we have shown that the Reed-

Solomon error correction scheme is very useful if

applied as proposed in this paper. In a first set of

experiments, the length of the handwritten stroke could

be reduced to the half, compared to previous encoding

schemes, still keeping the amount of information.

That is, using a stroke length of just 5cm, 32 bits

of information could be successfully embedded and

recovered from straight lines.

In the second set of experiments we have used more

complex patterns, ranging from symbols to handwritten

words. Even in this setup we could always recover 32-

bit of information. Note that 32 bit is enough to distin-

guish 232 people. This implies that if a company uses

this tiny marks for showing that a certain employee has

checked a document, it is possible to identify which

employee has checked the document. Also note that

small read/write RFID-cards usually allow to store the

same amount of information (32 bit).

References

[1] M. Liwicki, S. Uchida, M. Iwamura, S. Omachi, and
K. Kise, “Data-embedding pen — augmenting ink
strokes with meta-information,” in 9th Int. Workshop on
Document Analysis Systems, 2010.

[2] Y. Kato and M. Yasuhara, “Recovery of drawing order
from single-stroke handwriting images,” IEEE Trans.
Pat. Anal. Mach. Intell., vol. 22, no. 9, pp. 938–949,
2000.

[3] F. J. MacWilliams and N. J. A. Sloane, The Theory
of Error-Correcting Code. New York: North-Holland
Publishing Company, 1977.

[4] I. S. Reed and G. Solomon, “Polynomial codes over
certain finite fields,” Journal of the Society for Industrial
and Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

