Data-Embedding Pen —
Augmenting Ink Strokes with Meta-Information

Marcus Liwicki
Kyushu Univ. / DFKI
Fukuoka, Japan / Germany
marcus.liwicki@dfki.de

Masakazu lwamura
Osaka Prefecture Univ.
Osaka, Japan

ABSTRACT

In this paper we present the first operational version of the
data-embedding pen. During writing a pattern, this pen
produces an additional ink-dot sequence along the ink stroke
of the pattern. The ink-dot sequence represents, for exam-
ple, meta-information (such as the writer’s name and the
date of writing) and thus drastically increases the value of
the handwriting on a physical paper. Since the information
is placed on the paper, it can be extracted just by scanning
or photographing the paper. There is no need to get access
to any memory on the pen to recover the information. This
is useful especially in multi-writer or multi-pen scenarios.
The experiments using an encoding scheme and a decoding
algorithm showed very promising results. For example, it
was proved that we can embed 28 or more bits of informa-
tion on simple handwritten patterns and decode them with
a high reliability.

Categories and Subject Descriptors

1.7.5 [Document and Text Processing]: Document Capture;
E.4 [Coding and Information Theory|: Error control codes;
B.m [Hardware|: Miscellaneous—Design Management

General Terms
Design, Algorithms, Experimentation

1. INTRODUCTION

Handwriting is a popular modality for writing down infor-
mation, making annotations, or just marking items. Unfor-
tunately, as soon as the ink is on the paper, many important
information is already lost. In fact, we cannot access meta-
information about the handwritten pattern from itself; for
example, it is impossible to retrieve who wrote this pattern
or when it was written. In other words, a handwritten pat-
tern on a physical paper is just an ink pattern and thus
cannot provide any information but its shape.

Seiichi Uchida
Kyushu Univ.
Fukuoka, Japan

uchida@ait.kyushu-u.ac.jp

Shinichiro Omachi
Tohoku Univ.
Miyagi, Japan

Koichi Kise
Osaka Prefecture Univ.
Osaka, Japan

Digital pens seem to be a possible choice to store and re-
trieve such meta-information — unfortunately, they cannot
increase the value of handwriting on paper either. Nowa-
days, several digital pens to capture handwriting on nor-
mal paper have been developed and those pens can store
the stroke sequences on a computer along with some meta-
information, such as the writer ID. However, the handwrit-
ing on the paper is still just an ink pattern without any
meta-information.

In this paper, we propose a novel pen device to enrich the
handwriting on the physical paper. The proposed pen de-
vice, called data-embedding pen, can embed arbitrary in-
formation (such as meta-information) by an additional ink-
dot sequence along the ink stroke of the handwriting. Each
ink-dot represents an information bit and thus an ink-dot
sequence represents a bit-stream of the information to be
embedded. The information can be retrieved by scanning or
photographing the paper and decoding the ink-dot sequence.

The most important property of the data-embedding pen is
the increased value of handwriting on the physical paper. If
we embed the writer ID, the handwriting on the physical
paper itself stores this meta-information and identifies the
writer without using an electronic memory. If we embed
an URL into the handwriting, the handwriting becomes a
link between the physical world (paper) and the cyber-space
(the Internet). Furthermore, if we embed any temporal in-
formation or hints into the pattern, it is possible to convert
the strokes into the online representation which is helpful to
attain a better handwriting recognition accuracy.

Another property is the omission of preparing any special
paper or sensing device before writing. There is no need to
take care where to write down a note or comment. Thus this
device does not interrupt the thinking process, especially
when something important pops into ones mind. This fact
is also supported by the feature that a final data-embedding
pen will be immediately ready for use without long startup
times. While the current prototype is comprised of several
devices for controlling several parameters, those devices can
be removed or down-sized for a final version.

2. RELATED WORK

To the authors’ best knowledge, this is the first trial on im-
plementing a new pen device which can embed arbitrary

Figure 1: The first prototype of the data-embedding pen.

information dynamically into handwriting on a paper. Gen-
erally, data embedding into papers has been done statically
by a printer. For example, XEROX DataGlyph [?] is a kind
of digital watermarks and information is printed and em-
bedded as a fine texture into font images (or photographs).

Nowadays, the most famous digital pen may be Anoto®. An-
oto reads the dot pattern printed on the paper surface from
its pen-tip camera and detects its absolute position on the
paper by interpreting the pattern. By continuously detect-
ing the position during the pen movement, Anoto can ac-
quire the online patterns. Anoto and the data-embedding
pen have very different purposes. The purpose of Anoto is to
get the pen motion and to identify the absolute position on
the paper. Thus, Anoto is considered as a kind of pen-tablet
and the handwritten strokes on the paper have no additional
value. In contrast, the purpose of the data-embedding pen
is to enhance the value of the strokes on the paper.

The embedded ink-dots will also be helpful for the problem
of online information recovery from the handwritten stroke
image. There have been many attempts to solve the problem
of so-called stroke recovery [?, 7, ?]. Since stroke recovery
is a kind of inverse problem, it is an ill-posed problem with
intrinsic difficulties. For example, no one can always give
the correct online information of “X”, which was written as
“\ = /7or“/ = \”or “>—<.” If we embed any temporal
information (such as the writing direction) by an ink-dot se-
quence, it is possible to make the problem well-posed. This
implies that we can convert handwritten images into online
patterns and thus apply online handwriting recognition [?,
?], which is generally more accurate than offline recogni-
tion [?].

3. THE DATA-EMBEDDING PEN
3.1 General Idea

The data-embedding pen is a device which comprises a usual
ball-point pen and an ink-jet nozzle element. Figure 1 shows

"http://www.anoto.com

Figure 2: (a) Ink-dots (light) nearby a handwriting stroke
(black). (b) After image processing.

a picture of this device. During the writing, the nozzle pro-
duces small ink-dots alongside the handwritten stroke. The
color of the ink-dots is different from the color of the stroke.
In this paper, yellow is used for the ink-dots. (Invisible ink
has already been tested as a good alternative for the future.)
The number of the ink-dots and their timing are used to en-
code the desired information. An automatically processed
version of the ink-dots in Fig. 1 is shown in Fig. 2 (a).

In order to extract the information, the image is first scanned
or photographed. Then document analysis algorithms are
applied for recovering the online stroke representation (see
Section 5.2). Next, the sequence information of the ink-dots
is determined by using the online stroke representation. Fi-
nally the sequence is decoded (see Section 5.3).

The idea of the data-embedding pen has been presented pre-
viously in [?]. In [?], however, no functional device was at
hand and thus only simulated data served for an experi-
mental evaluation. In this paper, the first pen prototype is
presented and experiments on real data are conducted. Fur-
thermore, an error-redundant and error-correcting coding
scheme is proposed and a novel set of document processing
algorithms are introduced.

3.2 Hardware

As shown in Fig. 1, the data-embedding pen basically con-
sists of a usual ball-point pen (right) and an inking nozzle
element (left). In the current prototype, three devices are
used to control the nozzle element and its ink tank. The
first device is an amplifier for activating the piezoelectric jet
inside the nozzle. It is connected with the nozzle element by
a cable. The second is a vacuum pump for controlling the
pressure of the ink; it is connected to the ink tank to avoid
too high ink pressure (which would result in a blocking of
the nozzle) and too low pressure (which would restrain the
ink flow). The third is a programmable D/A converter for
providing triggers to the amplifier for controlling the timing
of ink-dots.

Although those devices make the prototype less practical,
they are necessary during feasibility study for fixing several
parameters and the coding scheme. In other words, they can
be removed or down-sized after the fixation. Several ideas
to improve the hardware are mentioned in Section 8.3.

The nozzle is able to generate up to 2,000 ink-dots per sec-
ond. Using this high frequency, we can form a connected
line by a sequence of several ink-dots. Hereafter, a line by
n sequential ink-dots is called m-pulse line. If n = 1, the
n-pulse line forms a single ink-dot. The line, of course, be-

comes longer by increasing n.

Although our past simulation experiment [?] assumed three
colors for ink-dots, we now assume just a single color (yel-
low, in the following experiment) as noted above, due to the
fact that the color that the current prototype has a single
inking nozzle. Of course, multiple colors will increase the
information embedding density. On the other hand side the
use of multiple colors will make the pen much larger and
thus be less feasible.

4. INFORMATION EMBEDDING
4.1 Units of Coding

Our coding scheme is based on the combination of three dif-
ferent n-pulse lines. Specifically, we use n = 1 (a dot), 5 (a
short line), and 20 (a long line). The ink-dot sequence of
Fig. 2 consists of those n-pulse lines. Roughly speaking, the
information is converted into a binary (0 and 1) sequence
and embedded by using the 1-pulse line as 0 and the 5-pulse
line as 1. A short pause is prepared between each bit in-
formation (l-pulse or 5-pulse line) like in the Morse code.
The 20-pulse line, hereafter called synchronization blob, is
used as an anchor to make sure that a correct position is
extracted. The leftmost dot in Fig. 2 depicts such a syn-
chronization blob.

Our coding scheme is defined by three units, called frame,
block, and bit. (These namings are motivated by the termi-
nology of network protocol design.) The bit is the smallest
unit and defined by a 1-pulse line or a 5-pulse line. Several
consecutive bits comprises a block and several consecutive
blocks comprises a frame. A pause which is longer than
the pause between bits is inserted between two consecutive
blocks. Each frame begins (or, equivalently, ends) at a syn-
chronization blob.

Figure 2 is an example of a single frame. From left to right,
the ink-dot sequence of the frame is comprised of a synchro-
nization blob, 6 blocks, and another synchronization blob.
In each block, 4 bits are encoded and thus in the frame 24
bits (0110—1010—1010—1010—0000—1100) are embedded.

4.2 Parameters

The main parameters of the coding scheme are the number
of bits per block (bB) and the number of blocks per frame
(bF). Accordingly, the number of bits per frame becomes
bF xbB. In the example of Fig. 2, bF' = 6 and bB = 4. Since
those parameters are important for embedding performance
their influence will be discussed in the experiments section.

Another important parameter is the bit time (b7'). It con-
trols the time duration assigned for each bit. For example, if
bT = 20, there would be 19 pulses without any inking after a
1-pulse line and 15 pulses without any inking after a 5-pulse
line. Having a constant bit time increases the probability
that the pulse lines within a block have equal distance to
each other, which is beneficial for the information recovery.
After each block we make a pause of length bT and before
the start of a synchronization pulse line, we make another
pause of length bT'. This results in a larger gap at the end of
a frame, making it possible to recover the writing direction
(see Section 8.1).

Figure 3: Two loops with ink-dots.

4.3 Error Correction

Error correction must be considered in the coding scheme
because the ink-dots are not always extracted correctly. In
fact, there are many problems in the extraction. For ex-
ample, sharply curved strokes, stroke intersections, writing
speed fluctuation, and noise on the paper surface often dis-
turb the extraction. Consequently, we must assume missed
bits, merged bits, and spurious bits.

Two popular error correction methods are introduced in this
paper. The first method is a repetitive code and the second
is a parity check. The repetitive code is very simple; the
same bit sequence (often comprised of several frames) are
embedded repeatedly. We can detect and correct errors by
comparing frames, which should contain the same bit se-
quence. For making this comparison easier, the first two
bits of a frame is used for showing an address of the frame.
In the frame of Fig. 2, the first two bits (01) represent the
address 0% 2° + 12! =2,

For the error correction by the parity check, the last bits of
each frame are parities. In the frame of Fig. 2, the last 8 bits
are considered as the parities for detecting and correcting
the errors of the first 16 blocks. The parity check is done
by a matrix; the first 4 blocks are aligned as a 4 x 4 matrix
(each row corresponds to a block) and then the 5th block is
used as parity bits for each column and the 6th block is used
similarly for each row. Note that by introducing the frame
address (2 bits) and the parity check (2 blocks x4 bits), the
amount of encodeable data by a frame (24 bits) becomes 14
bits.

S. INFORMATION RECOVERY

5.1 Image Processing

Information recovery begins with image processing which
extracts ink-dots and black ink strokes from a scanned im-
age. In the this section, four steps of image processing are
explained using Fig. 4 (a), which is an intersection part of
Figure 3 (“two-loops”).

The first step of ink-dot extraction is a simple thresholding
operation to extract the black ink stroke and yellow ink-
dots. The second step is noise removal because the black
ink stroke image extracted includes many noisy pixels, as
shown in Fig. 4 (b). Thus, erosion and dilation are applied.
Figure 4 (c) shows the result. Similar operations are also
applied to the ink-dot image (Fig. 4 (d)). Note that the
parameters for those operations can be optimized on a small
training set.

Figure 4: Image processing on an intersection part of Fig. 3. See text for details.

The third step is a special treatment of ink-dots occluded
by the black ink stroke. Fortunately, those yellow ink-dots
are still visible on the stroke (they just appear to be a bit
darker). Thus, after extracting the pixels of the black ink
stroke, another thresholding operation is performed on those
pixels with a lower threshold to recover dark yellow ink-dots.
In the following experiments it turned out that about 50%
of those dots could be recovered by this approach.

The fourth step is a thinning operation on the black ink
stroke. Figure 4 (d) shows the result of an orthodox thinning
method. Then, after removing many small loops and short
spurious edges by unifying neighboring branches, the final
thinning result is obtained as shown in Fig. 4 (e).

5.2 Aligning Ink-Dots by Stroke Recovery

In order to decode the ink-dots, they should be aligned ac-
cording to their original temporal order. Since this order
is lost in the scanned image, we must estimate it by us-
ing the result of stroke recovery. Specifically speaking, after
recovering the writing order of the black ink stroke based
on the algorithm presented in [?] and establishing the cor-
respondence between the ink-dots and the stroke, we align
the ink-dots.

The basic idea of establishing the correspondence as shown
in Fig. 4 (f) is to find the closest point on the stroke for each
ink-dot. A simple nearest neighbor, however, cannot always
provide a correct result because a dot and its corresponding
point might be a bit distant due to the pen tilt. Thus, at
each ink-dot k, we first calculate the minimum distance dj ¢
to the stroke for each 6 of 36 directions (with 10° interval).
Then, we select the direction 9 with minimum variance, i.e.,
6 = argming Var{di ¢, ...,dx ¢}. This direction is the most
stable direction and thus represents the pen tilt. Finally, for
each ink-dot k, the corresponding point is determined as the
closest point in the direction 8.

5.3 Data Decoding

For decoding, the bit information (i.e., 1-pulse and 5-pulse
lines and synchronization blob) is first recovered at every

ink-dot, just by checking its size. The sequence is separated
into frames using the synchronization blobs. Larger gaps
are detected within each frame and assumed as the gaps
between block.

Next, a plausibility control is performed on the extracted
data. For each block, the number of bits (bB) is confirmed.
Sometimes a block has spurious bits, resulting from a wrong
mapping or just from noise. In this case, those adjacent
bits whose distance deviates too much from the mean dis-
tance are deleted. If the number of bits and blocks do not
correspond to the values bB and bF, the frame is rejected.

For detecting and correcting replacement errors (i.e., 1 — 0
or 0 — 1), the parity check is performed within each frame.
If there is a failure in only one parity bit, it can be ignored
as the error of the parity bit. If there are two failures, one
in a row and one in a column, the corresponding data bit
is negated. In any other case the frame is rejected because
of uncertainty. Note that since we employ a repetitive code,
the information of a rejected frame can be recovered by a
frame with the same address at another repetition.

6. EXPERIMENTS
6.1 Parameter Optimization
6.1.1 Data

Two sets of data-embedded handwriting were collected, us-
ing the current pen prototype. The first set (Setl) contains
horizontal straight lines. The second set (Set2) contains loop
curves. (See Fig. 3 as an example). Each sample was written
on an A4 sheet. The widths of lines and loop curves were
about 20cm. (The size of each loop was less than 3cm x
3cm.) On each sheet, 14 straight lines or 7 loop curves were
written. To investigate the influence of the velocity, the first
part of each sheet has been drawn with a speed lower than
normal writing speed (about 3 seconds for 20 cm). The suc-
ceeding part has been drawn with a normal writing speed
(about 1.5 seconds for 20 cm), and the last part has been
drawn with a higher writing speed (less than a second for 20
cm). All data has been written by the same writer in order
to make the results comparable.

__ 100

S -—]

g 80 - e e N

£ lines (20) —

= lines (30) -——--—--

3 60 loops (20) -------]

g lines (10) -

o

3 4

(]

©

>

g 20t el

5 T

&) S
0

writing speed

Figure 5: Influence of writing speed and bit time on accuracy
at bB = 4 and bF = 6. (The number in parenthesis denotes
the value of bT').

For each data set, 6 paper sheets were prepared. Each sheet
contains the data-embedded handwriting produced with one
of six different parameter settings: (bB,bF,bT) = (4,6, 10),
(4,6,20), (4,6,30), (5,3,20), (12,2,20),(7,5,20). Conse-
quently, Setl contains 6 x 14 straight lines and Set2 contains
6 x 7 loop curves.

A sequence of four frames was the unit representing the en-
tire information to be embedded and the unit was repeated
along the black ink stroke. In other words, we used the
repetitive code for error correction. The dot sequence for
each frame was as follows:

1st frame: 1,1,1,1,1,1,...
2nd frame: 0,0,0,0,0,0,...
3rd frame: 1,0,1,0,1,0,...
4th frame: 1,1,0,0,1,1,...

Note that the length of the was changed by bB and bF. In
all cases two bits for the frame address were added in front
and the last bits were reserved for the parity information as
stated in Section 4.3. For example, if bB = 4 and bF = 6,
the dot sequence of the first frame being comprised of (i) two
bits of the address (0,0), (ii) 14 bits of 1, and (iii) 8 bits of
parity.

All the handwriting was written on an ordinary white paper.
The paper was scanned by a flat-bed scanner with the reso-
lution of 1,200 dpi. The average size of an ink dot (1-pulse
line) was 0.1 mm.

Table 1 shows a summary of the coding styles used in our
experiments, with the corresponding matrix dimension for
the parity check, the bits needed for the parity check, and
the number of information bits (i,e., bits for representing the
information to be embedded).

6.1.2 Influence of Writing Speed and Bit Time

The influence of writing speed and bit time b7 was investi-
gated with the parameters fixed at bB = 4 and bF = 6. We
tested the recovery algorithm on both sets mentioned above,

using all three writing speeds and three different values of
the bit time, i.e., b7 = 10, 20, 30.

The results appear in Fig. 5, where the percentage of cor-
rectly decoded frames is given in the y-axis, corresponding
to the writing speed (slow, medium, fast) given in the z-
axis. As expected, better results have been achieved on
Setl, where only straight lines were written. For the more
difficult set, the loop curves, only about half of the frames
were correctly decoded.

It is very important to note that all erroneous frames have
been rejected successfully by the error detection procedures.
In other words, no false decoding result occurred. This
makes the system very reliable, because the code is repeated
every four frames. We observed that within the span of two
loops each code (the unit of four frames) appears at least
twice, resulting in a nearly perfect decoding rate for two-
loop length.

Setting bT" = 20 produced the best results for all writing
speeds. Therefore we used this bit time in the following
experiments. If there were long spaces between the bits
(bT = 30 combined with a fast writing speed), the accuracy
drops to 0, even for straight lines. The main reason for
this can be seen in the fact that the written line is not long
enough to store the information of a whole frame.

6.1.3 Influence of Coding Styles

Table 2 shows the decoding performance for different codes.
For Setl, at all code styles, almost perfect decoding was real-
ized at each frame. Considering the fact that the same code
was embedded repeatedly, we can expect a perfect decoding
in the case of straight lines.

The results on Set2 reveal interesting properties of the differ-
ent code styles. The highest accuracy of 67% was achieved
with the shortest code (7 bit per frame). With an increas-
ing code length, the recognition rate drops dramatically. In
fact, with the 34-bit/frame code (not in the table), no frame
has correctly been decoded. However, we did not exhaust
all the error correction possibilities of our encoding. The ap-
plication of more sophisticated error correction methods is
beyond the scope of this paper and will be subject to future
work. (See Section 8.1.)

The last column in Table 2 shows the results when only
2-loop patterns were examined on Set2. The value shows
how many information can be decoded correctly if only two
succeeding loops are at hand. All encoded information was
correctly decoded with the shortest code, which is a very
promising result. Consequently we can retrieve 4 x 7 = 28
bits of information perfectly from 2-loops. Two loops have
a pattern size of about 3cm x 6cm.

Table 2 shows the rejection rate of frames which either did
not pass the plausibility control or were rejected after the
parity check. Removing the plausibility control, all those
frames would be considered as output, which would result
in a large increase of incorrect frames.

In order to investigate the impact of the parity check, we
have performed experiments without a parity check. For

Table 1: Variations of coding styles examined in the experiment. Recall that two bits are used for the frame address.

parity bits | info bits total
/frame

bB bF | parity

matrix
5 3 3x3
4 6 4 x4
12 2 4 x4
7 5 5 x5

/frame info bits
7 28
14 56
14 56
23 92

Table 2: Average decoding rates for different code styles.

Setl (straight) Set2 (loop)
bB bF info total | correct rejected incorrect | correct rejected incorrect recovery
bits info | frames frames w/o parity | frames frames w/o parity | from 2-loop
/frame Dbits (%) (%) (%) (%) (%) (%)
5 3 7 28 100 0 67 33 7 100
4 6 14 56 96 4 45 55 15 94
12 2 14 56 96 4 20 80 12 35
7 5 23 92 100 0 9 91 9 6

|
&

Figure 6: Example of a written “@Q” and a checkmark.

Set1, without the parity check, only 4% of all frames had
errors. This implies that we can embed more information
into straight lines by removing parity bits. In contrast, for
Set2, we can see a larger impact. The rate of incorrect
frames is not negligible. For example, in the case of bB =5
and bF = 3, 7% of the correct frames (67%) were helped by
the parity check.

6.2 Examples on Real Data

Besides the experiments described above, we also have per-
formed tests on handwritten patterns which might appear in
a real world scenario. That is, we have acquired three small
sets with real handwritten strokes. The first set comprises
18 “@” symbols, the second set contains 21 checkmarks and
the final set consists of 17 simulated signatures. Since the
7-bit code performed best in the previous section, we have
used it in these experiments. Examples of the three data
sets can be found in Figs. 6 and 7.

In our experiments, at least 21 bit were correctly extracted
from each “@” symbol and each checkmark. Considering
that these symbols are less than 3 x 3 cm in size, this is a
very promising result. Note that 21 bit is enough to distin-
guish 22! people. This implies that if a company uses this
tiny marks for showing that a certain employee has checked
a document, it is possible to identify which employee has
checked the document in a huge company (> 2 million!)

The most challenging task is the decoding of information

Figure 7: A simulated signature (top) and the extracted ink
dots (bottom).

added to a small handwritten signature “Meyer.” The sig-
natures have a size of 1 cm in height an 4 cm in length. In
the case of the signature of Fig. 7, even three frames (out of
four) were correctly decoded.

7. APPLICATIONS

What can this data-embedding pen be used for? It is very
novel device and thus we have not assumed some specific
“killer application”. A possible application depends on how
many bits can be embedded and decoded successfully — on
this point, there is many room for improvement. However,
we can consider many possible applications even though we
can just embed, say, 28 bit information in a single handwrit-
ing pattern.

As indicated before, meta-information about the handwrit-
ing is the most straightforward target to be embedded; for

writing direction —=
- v - —— -

-

Figure 8: The direction of the closest stroke to the synchro-
nization blob can be interpreted as the writing direction.

example, time/date of writing, geo-location, writer ID, and
pen ID. Of course, this meta-information is useful for signa-
ture verification and other forensic applications. In addition,
if we know the author of a handwritten note, the recogni-
tion of the handwriting will become easier because we can
apply some character recognition model tuned to the writer.
Discrimination of multiple writers on a single document is
also possible.

If we embed the price of a product onto its package by a
handwritten checkmark, the checkmark can be considered
as a “handwritten” bar-code. If we embed a URL onto a
physical paper by a handwritten word (or phrase), the word
becomes a link between physical world (paper) and a cyber-
space (the Internet).

Embedding information on the paper opens up new possi-
bilities for diaries and notebooks. The owner can always
find out when and where the information has been written
down. After recognizing and recovering all information we
can easily bridge to the digital world and fill Web 2.0 com-
munication platforms with contents. For creating a blog of
a journey, for example, you just need to write down short
notes about the places where you are, the information where
you have been and when the event took place would be au-
tomatically available.

One dreamy application is to embed the recognition result of
the current handwritten word onto itself or the succeeding
word. For this application, the handwriting pattern should
be captured by a pen-tip camera or another sensor and rec-
ognized quickly.

8. DISCUSSION

In this Section we will discuss important aspects to be con-
sidered in order to make the pen device useful in praxis.

8.1 Coding Scheme

The encoding presented in Section 4 has much more ca-
pabilities than those currently exploited by the decoding
algorithm. The pause before the synchronization blob, for
example, can be used to determine the writing direction dur-
ing stroke recovery. The side with the shorter distance to
the next ink dot would be the one in writing direction. An
illustration of this property is shown in Fig. 8. This informa-
tion can improve stroke recovery when the writing direction
cannot be determined by conventional techniques.

Another feature of the encoding is the possibility to derive
the writing speed from the length of the n-pulse lines and
the distance between succeeding bits. Longer n-pulse lines
would correspond to faster writing (see Fig. 9). Further-
more, the writing angle and the tilt of the pen can be roughly

Figure 9: Different length of the n-pulse lines depending on
the velocity. (top: slow velocity, bottom: faster velocity)

estimated by using the correspondence information from the
ink-dots to the line (see Section 5.2). Note that a shorter
distance would indicate a larger tilt angle if the nozzle is
mounted on the pen as in Fig. 1.

Another crucial point is that in the current system most
of the errors are detected but not corrected yet, since the
main purpose of this work was to investigate the feasibility
of our approach. Currently, only the parity information is
used to correct 1-bit errors. Other errors, like missing ink
dots resulting from occlusion are perfectly detected but not
corrected yet. Developing algorithms to correct those errors
will be subject to future work.

8.2 Writing Speed

As shown in the experiments, the writing speed is crucial
for the reliability of the algorithm. Especially at stopping
points and turning points there is no chance to recover the
correct information because the ink dots occlude each other.
The reason of this problem is that the ink dots are produced
according to time intervals and not to spacial distances.

To overcome this problem, we plan to take into account the
movement information of the pen. Therefore we can use
gravity sensors (gyroscopes) or the information of a camera.
Only a rough estimation of the movement speed is needed,
so we can use fast means with moderate precision.

8.3 Design Issues

We aim to make the pen more handy and independent from
external devices. Although the experimental results are
quite promising, the first prototype as shown in Fig. 1 is
far from being useful in praxis. The device is rather clumsy
and there is a need of three external devices, a computer,
an amplifier, and a vacuum device (see Section 3.2).

In order to increase the usability of the pen, its size will be
reduced and the haptic feeling will be adjusted to make it
similar to a normal pen. Some ideas were already realized.
We have modified an angled pen device which was originally
designed to facilitate writing?. The main casing is used as
a channel for the nozzle and side-channel is used for a ball-
point pen. The result is depicted in Fig. 10. Using this
setup makes it very comfortable to use the pen, because it
is similar to using a normal pen. Preliminary experiments
with this new design have led to improved results.

http://www.yoropen.com/

Figure 10: The new design of the data-embedding pen

For making the pen independent from external hardware,
one has to choose smaller devices or finally develop an in-
tegrated solution. Since the main purpose of our work is
a feasibility study and document analysis, this aspect was
not regarded yet. However, we could already manage to re-
move the vacuum device by mounting the ink-container at
a predefined height. Our ink-jet producer confirmed that
we could use a smaller ink-container filled with a sponge
mounted directly on the pen. To get rid of the big am-
plifier; we could use a tiny one as soon as all parameters
regarding the nozzle and the encoding are fixed. Instead
of the external computer used in the current setup, a small
micro-controller can be used, as done in other electronic pen
devices.

9. CONCLUSION

In this paper we have presented the first functional proto-
type of the data-embedding pen. This pen makes it possible
to augment handwritten patterns with meta-infomation like
the time of writing, the writer ID, and other application-
dependent data. The main idea is to encode the desired
information in an ink-dot sequence plotted nearby the writ-
ing strokes. The hardware design as well as the methods
for embedding and recovering information have been also
described.

A first evaluation on handwritten strokes (straight lines and
loop curves) showed that (i) we could embed and retrieve
information (~ 100 bit) on straight lines almost perfectly,
(ii) even on loop curves at least 28 bit were retrieved with-
out error, and (iii) the main parameters on the encoding
influenced the performance. In order to assess the practica-
bility of our system, we have performed initial experiments
on real handwritten words and characters. The encoded in-
formation could be recovered quite accurately from short
strokes which appear in many real-world cases. This shows
a high potential of the proposed approach.

In our discussions we have tackled the main problems of
the current hardware architecture. Ideas for the solution of
these problems have been proposed and some of them are
already implemented.

The data embedding pen presented in this paper is a suc-

cessful integration of state-of-the-art image processing meth-
ods and novel algorithms. The embedding makes it possi-
ble to reliably recover the information from scanned images
without any human input. With this approach we increase
the value of handwritten patterns on paper, introducing a
promising direction for offline handwriting processing.

10. ACKNOWLEDGMENTS

The authors thank Mr. Y. Hori, Microjet Corp., Japan, for
his kind support on customizing their inkjet nozzle technolo-
gies for our pen device. This research has been supported by
the Japanese Society for the Promotion of Science (JSPS).

