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Abstract

For on-line character recognition, predictive DP match-
ing is proposed where two physically different features, co-
ordinate features and directional features, are handled in
a unified manner. For this unification, the distance of the
directional features is converted into a distance of the co-
ordinate features by a feature prediction technique. An ex-
perimental result showed that the predictive DP matching
could attain a recognition rate comparable to the rate by
the conventional DP matching which requires the costly op-
timization of the weight to balance the two features.

1. Introduction
Dynamic programming (DP) matching is an elastic

matching technique and has been widely applied to on-line
character recognition. One of its early trails can be found in
1970’s [1] and it is still employed in recent trials. It is in-
teresting to note that a DP matching technique showed very
good recognition performance in the competition of on-line
Tamil character recognition at IWFHR2006 [2].

In on-line character recognition techniques including
DP-matching based techniques, each character pattern is of-
ten represented as a temporal sequence of coordinate feature
and directional feature [3]. Those two features are mutually
complementary. The coordinate feature can represent en-
tire character shape and is sensitive to shape distortion. In
contrast, the directional feature is robust to shape distortion
and ambiguous to represent the complete shape. (For exam-
ple, “6” and “0” may be represented by the same directional
feature sequence.)

On the use of the two features, careful consideration
is necessary because they are physically different features.
Most DP matching techniques (e.g., [4]) have employed a
weighted sum of a coordinate distance and a directional dis-
tance on evaluating the matching. Although the weighted
sum is a practical way, its theoretical grounding is rather
weak. In addition, there is no established way to determine
the weight. Thus, the weight was often determined empiri-
cally in past trials.

The predictive DP matching proposed in this paper can
handle the two features in a unified manner. A new dis-
tance, called a predictive distance, is introduced to evaluate

the distance of directional features in terms of a distance
of coordinate features. By using the predictive distance in-
stead of the conventional directional distance, it is possible
to evaluate the matching by only coordinate features and
thus to exclude the troublesome weight parameter.

The contributions of the predictive DP matching are
summarized as follows. First, the predictive DP matching
provides a reasonable strategy to convert the directional fea-
ture to the coordinate feature for handling the two features
in a unified manner. Second, the predictive DP matching in-
volves a novel prediction mechanism to generate reference
patterns adaptively according to each input pattern.

2. Related Work

We can find several strategies to handle two physically
different features (i.e., coordinate feature and directional
feature) other than the simple weighted sum, which will be
detailed in Section 3. Separated use will be another simple
strategy. For example, Kobayashi et al. [5] have proposed a
two-step matching technique where the directional feature
is used in the first step for a rough classification and the
positional feature is used in the second step.

Stochastic representation will be a more general strat-
egy and can unify physically different features. In this
strategy, each reference pattern will be represented as a se-
quence of three-dimensional probability density functions
pj(x, y, θ), j = 1, . . . , J of x-y coordinates and local direc-
tion θ, and the matching between the ith point of the input
pattern and the jth point of the reference pattern is evalu-
ated by, for example, − log pj(xi, yi, θi), where (xi, yi, θi)
is the feature vector of the ith point. In this evaluation, all
the features are normalized by their (co-)variances in the
stochastic representation and thus it is not necessary to mind
the physical difference between features. This strategy can
be found in several DP-based methods (e.g., [6]) as well as
HMM-based methods. The weakness of the strategy is a
large amount of training patterns for the estimation of reli-
able variances.

Another unification strategy can be found in [7]. This
strategy is somewhat similar to the proposed technique in
the sense that the directional distance is evaluated in terms
of a set of coordinate distances. Specifically, a sum of four



coordinate distances was used for the matching evaluation.
Two distances are for main evaluations. The other two dis-
tances are for auxiliary evaluations and used conditionally
to compensate weakness of the main evaluations on several
cases. Our evaluation is defined as a sum of two distances
and therefore much simpler than [7]. In addition, due to
the weakness, its recognition accuracy was lower than the
proposed technique as shown in a later section.

The proposed technique is further distinguishable from
the above past strategies because the proposed technique in-
volves a feature prediction mechanism and has a potential to
improve its performance by extending its prediction mecha-
nism. Several matching-based recognition techniques with
some prediction mechanisms [8, 9, 10] have been proposed
in the area of speech recognition. We can consult those
techniques to extend our prediction mechanism.

3. Conventional DP Matching Algorithm

3.1. Coordinate feature and directional fea-
ture

Let E denote an input pattern,

E = e1,e2, . . . ,ei, . . . ,eI (1)

and Rc denote the reference pattern of the class c ∈ [1, C],

Rc = r1, r2, . . . , rj , . . . , rJ . (2)

For simplicity, the notations rj and J are used here instead
of rc,j and Jc. The vectors ei and rj are the following
3-dimensional feature vectors,

{
ei = (xi, yi, θi),
rj = (Xj , Yj ,Θj),

(3)

where (xi, yi) and (Xj , Yj) are coordinate features, and θi

and Θj are directional features representing the local an-
gles of writing directions. The directional feature is often
derived from the coordinate features as follows:

{
θi = tan−1(yi − yi−1)/(xi − xi−1),
Θj = tan−1(Yj − Yj−1)/(Xj − Xj−1).

(4)

3.2. Coordinate distance and directional
distance

The evaluation of the matching between E and Rc is
based on the distance between feature vectors, ei and rj .
Let dpos+dir(ei, rj) denote the distance between ei and rj .
A naive definition that dpos+dir(ei, rj) = ‖ei − rj‖ does
not work because the coordinate feature and the directional
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feature are physically different quantities and have differ-
ent ranges. An alternative definition of dpos+dir(ei, rj) is a
weighted sum of two different distances (e.g., [4]), i.e.,

dpos+dir(ei, rj) = (1 − α)dpos(ei, rj) + αddir(ei, rj),
(5)

where dpos(ei, rj) is the coordinate distance defined as

dpos(ei, rj) = ‖(xi, yi) − (Xj , Yj)‖, (6)

and ddir(ei, rj) is the directional distance defined as

ddir(ei, rj) = |θi − Θj |. (7)

The constant α (0 ≤ α ≤ 1) is the weight to balance those
two distances. Note that the directional distance ranges
from 0 to π. Figures 1 and 2 illustrate the coordinate and
the directional distances, respectively.

3.3. DP matching

The matching between E and Rc are formulated as the
following optimization problem:
Minimize

J =
I∑

i=1

dpos+dir(ei, rji
) (8)

with respect to {ji | i = 1, . . . , I}
subject to 



ji ∈ {1, 2, . . . , J},
ji−1 ∈ {ji − 2, ji − 1, ji},
j1 = 1,
jI = J,

where the set of variables {ji} specify the matching (i.e.,
the point-to-point correspondence) between E and Rc.

It is well-known that the above optimal matching prob-
lem can be solved efficiently by a DP algorithm. The DP
algorithm relies on the following recursive equation:

g(i, j) = dpos+dir(ei, rj)+ min
j′∈{j−2,j−1,j}

g(i−1, j′), (9)
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Figure 3. Conventional DP algorithm.

where g(i, j) denotes the minimum matching cost between
e1, . . . ,ei and r1, . . . , rj . Thus, this equation implies the
fact that the minimum matching cost can be calculated re-
cursively from i = 1 to I . (This fact relies on so-called “the
principle of optimality.”) The minimum J is provided as
g(I, J) and used for the minimum distance discrimination
of E.

Figure 3 illustrates the DP algorithm. Any path from
(i, j) = (1, 1) to (I, J) on the i–j search graph represents
a sequence j1, . . . , ji, . . . , jI and thus represents a possi-
ble matching between E and Rc. Accordingly, the opti-
mal matching problem is reduced to the minimum cost path
problem and solved by the DP-recursion (9).

3.4. Optimization of weight α

There is no established way to determine the weight α.
This may be because the coordinate feature and the direc-
tional feature are physically different quantities and their
sum itself is somewhat groundless. As a practical solution,
the weight α is often determined empirically in a trial-and-
error manner.

4. Predictive DP Matching

4.1. Predictive distance

The key idea of the proposed predictive DP matching
is the fact that the directional feature θi is derived from
the difference between two consecutive coordinate features
(xi−1, yi−1) and (xi, yi) according to (4). This fact can
be interpreted in another way that the coordinate feature
(xi, yi) can be derived from (xi−1, yi−1) and θi, i.e.,

(xi, yi) = (xi−1, yi−1) + ‖(xi, yi) − (xi−1, yi−1)‖
· (cos θi, sin θi). (10)

Consider the replacement of θi by Θj in (10). If θi is
very close to Θj , the equality in (10) still holds. In con-
trast, if θi is different from Θj , the right-hand side of (10)
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Figure 5. Predictive distance dpred.

becomes different from the left-hand side. Thus, the differ-
ence between both sides can be used to evaluate the distance
between θi and Θj . Let (x̂i, ŷi) denote the right-hand side
of (10) after the replacement of θi by Θj , i.e.,

(x̂i, ŷi) = (xi−1, yi−1) + ‖(xi, yi) − (xi−1, yi−1)‖
· (cos Θj , sin Θj). (11)

The distance between θi and Θj can be evaluated as the
difference between (xi, yi) and (x̂i, ŷi), i.e.,

dpred(ei, rj) = ‖(xi, yi) − (x̂i, ŷi)‖. (12)

Although the distance dpred depends on ei−1 in addition to
ei and rj , we will use the notation dpred(ei, rj) for sim-
plicity1.

Figure 4 illustrates the equation (11), i.e., the derivation
of (x̂i, ŷi). As shown in this figure, (x̂i, ŷi) and (xi, yi)
are equidistant from (xi−1, yi−1). Figure 5 illustrates the
distance dpred(ei, rj).

The properties of dpred can be summarized as follows.

• The distance dpred is the difference between two co-
ordinate features. Thus, dpred has the same physical
meaning as dpos and can be added directly with dpos.

1If the input pattern is perfectly resampled so that ‖(xi, yi) − (xi−1,
yi−1)‖ equals to a constant D, the distance dpred no longer depends on
ei−1 because (x̂i, ŷi) = (xi−1, yi−1) + D · (cos Θj , sin Θj).
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• The distance dpred evaluates the difference between
two directional features, θi and Θj . In fact, if θi =Θj ,
dpred = 0. If θi − Θj = ±π (i.e., if θi and Θj

differ the most), dpred reaches its maximum value,
2‖(xi, yi) − (xi−1, yi−1)‖.

• The distance dpred is independent of the coordinate
features of Rc.

• The distance dpred can be called a predictive distance,
because the coordinate feature (x̂i, ŷi) can be consid-
ered as the prediction of (xi, yi) by (xi−1, yi−1) and
Θj . If θi = Θj , we can expect the perfect prediction.
Otherwise, we will have a prediction error as a non-
zero value of dpred.

We finally have the distance dpos+pred as an alternative
to dpos+dir. The distance dpos+pred is defined as the sum of
two coordinate distances, dpos and dpred, i.e.,

dpos+pred(ei, rj) = dpos(ei, rj) + dpred(ei, rj). (13)

Again, since dpos and dpred are based on the same physical
quantities, the weight α is not necessary to balance them.

4.2. Incorporation of predictive distance
into DP matching

Formally, the incorporation of the predictive distance
dpred into DP matching is very simple; it is done just by re-
placing dpos+dir by dpos+pred in the objective function J of
(8). Hereafter, we call the DP matching based on dpos+pred

predictive DP matching.
Figure 6 illustrates the predictive DP matching. The cur-

rent and the last input feature vectors ei and ei−1 are sent to
a predictor to obtain the predicted coordinate feature vector
(x̂i, ŷi). The detailed mechanism of the predictor is already
described as (11). The directional feature Θj (to be more
accurate, Θji

) acts as the inner parameter of the predictor.
Then, the distance between the predicted feature (x̂i, ŷi)

Table 1. Recognition rates (%).
dpos+dir dpos ddir dBurr dpos+pred dpred

95.9 92.8 87.3 94.8 95.2 87.0

and the current feature (xi, yi) is calculated as dpred and
added to dpos to have dpos+pred.

Figures 5 and 6 illustrate the important property of the
predictive DP matching; the predictive DP matching can
adapt the reference vector rj to the input vectors ei as
(x̂i, ŷi). In other words, the prediction mechanism involved
in the predictive DP matching generates an adapted refer-
ence pattern, (x̂1, ŷ1), . . . , (x̂i, ŷi), . . . , (x̂I , ŷI). The pre-
dictive distance dpred can be considered as the distance be-
tween the input pattern and this adapted reference pattern.

5. Experimental Results

5.1. Data preparation
Isolated numeral patterns from Ethem Alpaydin Digit,

which is an on-line character database in the Unipen for-
mat, were used. The database contains 7,494 training pat-
terns by 30 writers and 3,498 test patterns by other 14 writ-
ers. As preprocessing, each character pattern with multiple
strokes was converted into a single-stroke pattern by con-
necting pen-up parts linearly. Then, a linear size normal-
ization was performed to be 128× 128 while keeping the
original aspect ratio. Re-sampling was also performed to
make every pair of consecutive points equidistant.

Then, 21 reference patterns were created from the train-
ing patterns by the clustering method called CLUSTER [4].
Four references were assigned to the class “8”, three were
to “5”, “7”, and “9”, two were “1” and “4”, and one was
“0”, “2”, “3”, and “6.”

5.2. Recognition result by conventional DP
matching

First, the recognition performance of the conventional
DP matching based on (8) was evaluated by using the
above test data set. The weight α was optimized by ob-
serving the recognition rates for the training data at every
α ∈ {0, 0.01, 0.02, . . . , 0.99, 1}. Thus, the recognition ex-
periment was repeated 100 times. This trial-and-error op-
timization revealed that the optimal α = 0.41 could attain
the rate 98.2% for training data.

The recognition rates of the test data were summarized in
Table 1. The recognition rate by the conventional technique
(dpos+dir) was 95.9% at α = 0.41. This table also shows
the rate 92.8% attained by dpos alone and the rate 87.3%
attained by ddir alone. Those two rates were equivalent to
the rates attained by dpos+dir at α = 0 and 1. This fact
indicates that a thoughtless selection of α may degrade the
recognition performance by dpos+dir drastically.
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Table 1 also shows the result by dBurr, which is the dis-
tance proposed in [7]. As noted in Section 2, this distance
evaluates a directional distance by a coordinate distance,
and therefore has a close relation to the proposed tech-
nique. Its recognition rate, however, was rather insufficient
as shown in the table.

5.3. Recognition result by predictive DP
matching

As shown in Table 1, the recognition rate achieved by the
proposed technique (dpos+pred) was 95.2% and thus com-
parable to 95.9% by the conventional technique (dpos+dir).
This result should be appreciated by considering that the
performance of the conventional technique is degraded by a
thoughtless α. Furthermore, the proposed technique is free
from the costly optimization of α. Those results and facts
will show the usefulness of the proposed technique.

Figure 7 shows how dpred plays the role of ddir. In this
figure, (a) is an input pattern E of the class “1”, (b) is
a reference pattern Rc of the class “4”, (c) is a result of
matching between E and Rc, and (d) is the sequence of
the predicted coordinate features (, or the adapted reference
pattern) (x̂1, ŷ1), . . . , (x̂i, ŷi), . . . , (x̂I , ŷI). Since the char-
acters “1” and “4” have the similar directional features in
their beginning and end, the predicted coordinate features
(x̂i, ŷi) are very close to the input pattern (xi, yi) around
the beginning (A) and the ending (C) parts in (d). In con-
trast, the characters have different directional features in
their middle parts, and therefore we can observe some dif-
ference between the predicted coordinate features and the
input pattern around the middle (B) part. The graph (e)
compares dpred with ddir at each point i. Those two dis-
tances show very similar curves. Thus, the distance dpred is
a promising alternative to ddir.

6. Conclusion
For on-line character recognition, predictive DP match-

ing has been proposed. First, it could handle two physically
different features, coordinate features and directional fea-
tures, in a unified manner. Second, it involved a feature
prediction mechanism for the unification. Therefore pre-
dictive DP matching has a potential to improve its perfor-
mance by extending its prediction mechanism. The unifi-
cation has been done by replacing the conventional direc-

tional distance by a new coordinate distance, called a pre-
dictive distance. In other words, the directional distance is
converted into a new coordinate distance by the feature pre-
diction. The results of a recognition experiment have shown
that predictive DP matching can achieve a reasonable recog-
nition accuracy and that the predictive distance can take the
place of the directional distance.

Future work will focus on the development of a more
sophisticated prediction mechanism to improve the overall
performance of the predictive DP matching.
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