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Abstract—The goal of this research is to understand the
true distribution of character patterns. Advances in computer
technology for mass storage and digital processing have paved
way to process a massive dataset for various pattern recognition
problems. If we can represent and analyze the distribution of
a large-scale character pattern set directly and understand its
relationships deeply, it should be helpful for improving character
recognizer. For this purpose, we propose a network analysis
method to represent the distribution of patterns using a relative
neighborhood graph and its clustered version. In this paper, the
properties and validity of the proposed method are confirmed on
410,564 machine-printed digit patterns and 622,660 handwritten
digit patterns which were manually ground-truthed and resized
to 16 times 16 pixels. Our network analysis method represents
the distribution of the patterns without any assumption, approx-
imation or loss.

I. INTRODUCTION

The purpose of this paper is to understand the “true
distribution” of character patterns. For this ambitious purpose,
we need to satisfy the following two requirements. First, we
need to prepare real ground-truthed character patterns as many
as possible. It is also important to prepare patterns having
different properties, such as handwritten patterns and machine-
printed patterns, for understanding their different distributions.
Second, we need to use an analysis tool which is free from
any assumption and approximation, while it should provide
multiple observations enough to understand both of intra-class
distribution and inter-class relationship.

For the first requirement, we have prepared 410,564
machine-printed digit images and 622,660 handwritten digit
images. All of them are ground-truthed carefully, binarized,
and resized into 16 × 16 pixels. Although it is, of course,
impossible to cover all possible digit patterns by them (in the
256-dimensional binary feature space), we believe the amount
of our patterns is enough to understand the distributions of 10
character classes, i.e., digits.

For the second requirement, we represent the pattern dis-
tribution through network representations, where each node
corresponds to a single or multiple patterns and edge shows
some relationship such as neighborliness. Different from low-
dimensional representations such as principal component anal-
ysis and multi-dimensional scaling, network representations
will cause neither approximation nor representation error. In
addition, network representations are different from parametric

distribution representation, such as Gaussian mixture model-
ing, and thus free from any assumption.

As the network representations, we used relative neighbor-
hood graph (RNG) and its clustered version (Clustered-RNG).
RNG has suitable for representing the neighboring relationship
among patterns, and consequently, among classes. Clustered-
RNG, which is newly introduced in this paper, provides a
rough view of RNG, without any loss at representing inter-
class relationship.

The distribution of the massive machine-printed or hand-
written digit pattern images is analyzed by RNG and Clustered-
RNG representations at the following aspects. (i) Inter-class
relationship, especially, the neighboring relationship among
“multiple classes” (i.e., not just a class pair). (ii) Intra-class
distribution represented by how patterns of a certain class
are scattered in RNG. (iii) Difference of (Clustered-)RNG for
different digit image datasets (i.e., handwritten and machine-
printed). Most analysis results matches with our intuitive
expectation — this fact is important because the expectation
is proved by our network analysis in a far more reliable and
objective way.

II. RELATED WORK

Datasets containing massive patterns have become indis-
pensable for pattern recognition. For example, Torralba et
al. [1] prepared a huge dataset with 80 million images gathered
from the Internet, and they showed that high recognition
accuracy was achieved just by the simplest 1-NN (nearest
neighbor) rule with their massive image dataset. The quantity
of a character pattern dataset also tends to increase. The
classic MNIST dataset contains only 70,000 handwritten digit
patterns. Smith et al. [2] have done one of the largest-scale
researches with 223,000 handwritten digit patterns. Nowadays,
Uchida et al. [3] analyzed our 822,000 handwritten digit
pattern dataset with 1-NN analysis.

In past researches, these datasets are used mainly focusing
on recognition accuracy rather than distribution analysis (ex-
cept [3]). Exceptionally, Uchida et al. [3] employed minimum
spanning tress (MST) for representing the structure of the
digit pattern distribution and analyzed the network of MST.
Although a network analysis with MST can represent the struc-
ture of the pattern distribution, MST has a strong constraint
that a network of MST is a tree. This constraint causes that the
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Fig. 1. Examples of digit images.

nodes with the same class label come apart on the MST tree
in case the patterns of the class have a great variation. Thus,
instead of MST, we propose RNG network analysis, which is
more suitable to understand the real distribution.

III. EXPERIMENTAL SETUP FOR PATTERN DISTRIBUTION
ANALYSIS

In this paper, we deal with large-scale numeric character
image pattern sets (digit patterns). For the purpose of analyzing
the real pattern distribution, digit patterns possess the following
merits over general image patterns. (i) Since there are only
10 classes for digit patterns, it is possible to have an enough
number of patterns per class for understanding the precise
distribution of each class. (ii) Small and binary character
images can form a compact feature space. (iii) The classes
of character patterns can be defined with far less ambiguity
than visual objects.

A. Dataset

Our character image dataset is comprised of 410,564
machine-printed digit patterns (Dataset 1) and 622,660 hand-
written digit patterns (Dataset 2). Fig. 1 shows several patterns
from the dataset. All of the digit patterns were first isolated
from their original scanned images and centered in the isolated
image. Then the ground-truth, i.e., correct class label (“0”,. . .,
“9”), was attached to each pattern carefully by manual inspec-
tions by several professional operators.

1) Dataset 1: The images of Dataset 1 are machine-
printed digit patterns of serial numbers of banknotes. Dataset 1
consists of two subsets (Dataset 1-1 and Dataset 1-2). Each
subset is comprised of patterns with the one kind of font
which is issued in different countries. The distribution of these
patterns is expected to be simple, because those machine-
printed patterns are generally identical and just varied slightly.
The main variation factors of machine-printed digit patterns
are only dirt, blurred and binarization error. The number
of machine-printed digit patterns is Dataset 1-1: 199,504,
Dataset 1-2: 211,060. Only class “1” of Dataset 1-1 has 9,550
patterns, and the other classes have 21,106 patterns.

2) Dataset 2: The images of Dataset 2 are handwritten digit
patterns written by a number of unknown people. Different
from Dataset 1, Dataset 2 is comprised of patterns with large
varieties. The number of handwritten digit patterns is 622,660
and all the classes have 62,266 patterns.
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Fig. 2. An example of connected node pair (pi, pj).

B. Feature and Distance Metric

Each pattern is represented as a 256-dimensional binary
vector and thus corresponds to a corner of the 256-dimensional
hypercube. 1

As the distance metric, we employ Hamming distance. The
Hamming distance can be interpreted intuitively. For example,
if the Hamming distance is 25 between two 16 × 16 binary
patterns, this indicates that the two patterns have different
black/white value at 25 pixels (about 10% among 256 pixels).

IV. RELATIVE NEIGHBORHOOD GRAPH (RNG) AND
CLUSTERED-RNG

A. RNG and Its Properties

RNG [4], [5] is undirected graph where neighboring pat-
terns tend to be connected by an edge. RNG is more intuitive
than the nearest neighbor graph, which is a directed graph2.
Because of this good property, RNG has been used for many
researches, such as computer vision, geographic analysis, pat-
tern classification, etc[6]. For pattern classification problems,
Urquhart [7], Sanchez et al. [8] and Zighed et al. [9] proposed
clustering methods with RNG. Ichino et al. [10] used RNG to
select globally effective feature and achieve better classifica-
tion performances. Different from those past trials, this paper
utilizes RNG and its clustered version, called Clustered-RNG,
for analyzing the distribution of massive character patterns.

Let P = {p1, p2, ..., pn} and E = {eij} denote the sets
of nodes and edges of an RNG, respectively. In this paper,
each node corresponds to a character pattern represented by
a d-dimensional feature vector. Each edge eij is prepared
iff d(pi, pj) ≤ maxk=1,...n,k ̸=i,j [d(pi, pk), d(pj , pk)], where
d(pi, pj) is the distance between pi and pj . Fig. 2 illustrates
this condition; intuitively, the edge ei,j exists iff there is no
pattern in the intersection part between two hyper-spheres
centered at pi and pj . The computational complexity for
building an RNG is O(n3) [4]. Fig. 3 (a) shows a tiny example
of RNG for handwritten digit patterns.

RNG has three properties suitable for analyzing the distri-
bution of a large-scale pattern set. The first property is that the
proximity between similar patterns is preserved. Consequently,

1Note that the analysis on this binary pattern distribution is directly related
to a continuous distribution by some feature extraction. This is because most
feature extraction methods are based on some linear operations and thus
properties in the original binary pattern distribution are mostly preserved even
in the continuous distribution.

2Even if X is the 1NN of Y , Y may not be the 1NN of X . Thus, NN
graph is a directed graph.
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Fig. 3. A tiny example of relative neighborhood graph (RNG) and its Clustered-RNG of handwritten digit patterns. (a) RNG of handwritten digit patterns,
where Hamming distance was used for measuring the distance between to nodes. Nodes are shown with image patterns. (b) Clustered-RNG. Connected nodes
with the same class label are clustered and shown as a circle symbol with the their label. The sizes of circle and the width of lines are proportional to the number
of clustered nodes and the number of connection between each different clustered node. (c) Circular layout of Clustered-RNG. Clustered nodes are aligned as
counter clockwise on the circumference as the number of clustered nodes.

Fig. 4. An RNG edge linking nodes of distant patterns.

similar patterns will form a “cluster” on RNG. The cluster is
defined as a set of connected nodes with the same class label.
For example, even the small RNG of Fig. 3 (a), images of “0”,
“1”, “3”, and “7” form one cluster. The second property is
that RNG is an undirected graph; this property is appropriate
because generally a pattern distribution does not define any
direction between patterns.

The third property of RNG is the most important and
distinctive property for the purpose of this paper, i.e., the
distribution analysis; namely, RNG can have edges between
nodes of distant patterns. Consider patterns of Fig. 4. If edges
are prepared only for nearest neighbor pattern pairs, only the
nodes with the same color are connected by the edge. In
contrast, according to the rule of RNG, there is a chance that
the nodes with different colors are connected (as indicated by
an orange edge). This edge is very useful; if we consider that
Fig. 4 shows a pattern distribution of three classes, the edge
represents inter-class boundary. Consequently, using RNG, we
can analyze inter-class boundary. In fact, this property will be
fully utilized in the later analysis.

B. Clustered-RNG and Its Properties

We also use Clustered-RNG, which is a compressed repre-
sentation of RNG. As shown Fig. 3 (a), RNG has a node for
each individual pattern and thus it is practically impossible to
plot an RNG for a massive pattern set. In addition, even though
we want to focus inter-class relationship by inter-class edges,
it is also difficult; this is because such edges are massive and
scattered in the RNG.

Clustered-RNG converts a set of connected RNG nodes
with the same class label into a new node. As shown in
Fig. 3 (b), three connected nods of “1” on RNG becomes a
single node in the Clustered-RNG. On the other hands, the
class “6” has two nodes in the Clustered-RNG, because one
“6” is not connected directly to the other two “6”s, which are
mutually connected in the RNG. In the following experiment,
we will show a Clustered-RNG using circular layout as shown
in Fig. 3 (c).

Clustered-RNG inherits the good properties of RNG men-
tioned above and also have merits by itself. The properties of
the Clustered-RNG are summarized as follows.

Property (i): Clustered-RNG reveals inter-class relation-
ship. An important point is that Clustered-RNG does not loose
any edge of inter-class boundary during its building process.
Thus, by observing Clustered-RNG we can understand the
inter-class relationship without any loss. It is interesting to
note that, as indicated by Fig. 4, Clustered-RNG as well as
RNG will have the inter-class boundary edge between “distant”
classes when there is no obstacle between the classes. Also
note that the those inter-class edges are strongly related to
support vectors by support vector machines (SVM).

Property (ii): Clustered-RNG reveals multi-class relation-
ship. For example, in case of Dataset 1-1(Fig. 1), the class pairs
“3”-“8” and “6”-“8” have the closer neighboring relationships
and class “8” relay these neighboring relationships of the class
“3” and “6”. 3 This multi-class neighboring relationship will
be useful, for example, for designing a multi-class recognizer
by using a set of two-class classifiers (like SVM). In the above
three-class case, we can understand that it is better to use a
3-vs-others (6 and 8) classifier and then a 6-vs-8 classifier
instead of a 3-vs-6 classifier.

Property (iii): Clustered-RNG detects outliers. As shown
Fig. 5 (a), we can detect outliers by measuring the nearest
neighbor distance to the same class. However, for the case of
(b), we cannot detect them because the two outliers are close

3It is also interesting to note that if class “8” is removed, some inter-class
edges will appear between “3” and “6”. This means that all the inter-class
edges are determined by considering those three classes, even though each
individual edge only links two classes. This fact also indicates that Clustered-
RNG shows multi-class relationship.
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Fig. 5. Outliers can be detected (a) or cannot be detected (b) by the nearest
neighbor distance to the same class.

to each other. 4 Clustered-RNG detects both of these outliers as
other clustered nodes, because only the connecting nodes with
same class label is clustered on a RNG network. According
to increase of the patterns, outliers will increase and distribute
closer to each other. Thus, this property is useful to analyze
the distribution of a large-scale pattern set.

V. EXPERIMENT AND NETWORK ANALYSIS

A. Printed Digits (Dataset 1-1, 1-2)

We first confirmed several properties of network analysis
using RNG and Clustered-RNG, through the experiments with
the large-scale dataset of machine-printed digit patterns. The
machine-printed digit patterns are expected to have a simplest
pattern distribution.

Fig. 6 (a) shows the Clustered-RNG of Dataset 1-1
(199,504 digit patterns). It was observed that each class forms
only one clustered node. This means that machine-printed digit
patterns from a class are very similar to each other. In fact, it
is rather surprising that even in such a large dataset, there is
no “lonely” pattern (like “9” at the rightmost in the RNG of
Fig. 3 (a)) and no “isolated” small pattern set.

Fig. 6 (a) also shows that several class pairs (e.g., “0” and
“1”) had no edge and similar class pairs had many edges.
Actually, the class pair “3” and “8” had 2,214 edges. It is
interesting to note that the class pairs “3”-“8” and “6”-“8”
had many edges, but the class pair “3” and “6” had no edge.
It means that class “8” relays the neighboring relationship of
class “3” and “6”. This observation proves that Clustered-RNG
can represent the neighboring relationship among multiple
classes directly. (One may consider that the confusion matrix
can show such a relationship — this consideration is wrong as
proved later.)

The edge width also provides knowledge on the inter-class
relationship of the pattern distribution. A thicker edge between
“3” and “8” represents that there are many edges between those
classes and thus the distributions of “3” and “8” are facing each
other “widely”.

Fig. 6 (b) shows the Clustered-RNG of Dataset 1-2
(211,060 digit patterns). Although its shape was similar to the
Clustered-RNG of Dataset 1-1, there were more edges than
Fig. 6 (a). This fact indicates that the patterns of Dataset 1-2

4Even if we use kNN for outlier detection, it is useless if the more than k
outliers are close to each other.
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Fig. 6. Clustered-RNG. A thicker line between a pair of clustered nodes
indicates that there are more edges between them. (a) Dataset 1-1. (b)
Dataset 1-2.
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Fig. 7. The images of the node connecting the clustered node pair “4” and
“5” on the Clustered-RNG of Dataset 1-2

are distributed a bit wider than that of Dataset 1-1. Probably,
the reason of it is that Dataset 1-2 has more binarization errors
caused from the design of background. Several images of the
nodes connecting the clustered node pair “4” and “5” are
shown Fig. 7. (Note that there is no edge between “4” and “5”
in Fig. 6 (a).) The influence of binarization errors are clearly
observed from those images.

B. Handwritten Digits (Dataset 2)

Fig. 8 shows the Clustered-RNG of Dataset 2 (622,660
digit patterns) and it is largely different from the Clustered-
RNGs for machine-printed digits. Each of all the classes was
separated to several clusters. Generally, the size of a clustered
node was very large or very small. Specifically, each class
had only one very large clustered node and other very small
clustered nodes. The total number of the small cluster nodes
was 370.

The small clustered nodes were comprised of patterns with
large deformations. Fig. 9 shows several image examples of the
small clustered nodes. This fact indicates that the Clustered-
RNG is useful to extract “outliers” automatically as a small
cluster (i.e., a small pattern set) surrounded by nodes of other
classes.

Clustered-RNG represents the complex distribution of the
large-scale handwritten digit patterns as a simple network.
Fig. 10 shows a simplified version of Fig. 8 by only plotting
large clustered nodes. Different from Fig. 6 (a) and (b), this
graph is a complete graph; this means that for handwritten
digits, any pair of digit classes have some neighboring re-
lationship in their distributions. Most of the class pairs had
many edges more than Clustered-RNG of the machine-printed
patterns (e.g., class pair “7” and “9” had 36,287 edges).

A deeper analysis on Fig. 10 reveals that 34,935 nodes
of class “9” (about 56%) had an edge connected to the node
with different label. This fact indicates that many nodes are
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Fig. 8. Clustered-RNG of Dataset 2. (a) Clusters are aligned as counter
clockwise on the circumference as the number of clustered nodes. (b) Enlarged
view around the large cluster of class “5”. The outliers are shown as small
clusters.
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Fig. 9. Image examples from the small clustered nodes.

located around the class boundary and the distribution is much
complex. Even with such a complex distribution, the inter-class
complex relationship is compressed and represented simply on
Clustered-RNG network.

C. Difference from Confusion Matrix

Although a conventional confusion matrix also can provide
knowledge on inter-class neighboring relationship, it is less
informative than our RNG representation. Fig. 11 is a graph
created from the confusion matrix of the 1-NN classification
of Dataset 2. It is much simpler than Fig. 10. As shown in
Fig. 4, the Clustered-RNG can show the “distant” neighboring
relationship and also multi-class relationship and thus will have
more edges. The pattern distribution of Dataset 2 is complex
as observed above, but the network of 1-NN classification
was rather simple. (i.e., a smaller number of thick lines). For
example, class “0” had only 100 or less misrecognition patterns
for each class pair. Clustered-RNG represents the distribution
of the patterns without any loss at representing the inter-class
relationship.

VI. CONCLUSION AND FUTURE WORK

This paper proposes the method to represent and analyze
the distribution of the patterns using RNG and Clustered-RNG
without any assumption, approximation or loss. The properties
and validity of this Clustered-RNG analysis is confirmed on
410,564 machine-printed digit patterns and 622,660 handwrit-
ten digit patterns. Clustered-RNG analysis represents the com-
plex distribution of the patterns as a network of clustered nodes
simply, and reveals not only inter-class relationship but also
multi-class relationship of the pattern distribution. In addition,
Clustered-RNG analysis extracts outliers automatically as a

Fig. 10. Clustered-RNG with large clustered nodes of Dataset 2. A thicker
line between a pair of clustered nodes indicates that there are more edges
between them.

Fig. 11. The network of the class relationship by 1-NN classification of
Dataset 2. A thicker line between a pair of nodes indicates that there are more
misrecognitions between them.

small cluster. As future work, the intra-class distribution of
patterns within the clustered nodes of Clustered-RNG will be
studied, such as how patterns of a certain class are scattered in
RNG. Further analysis of the relationship between inter-class
edges of RNG and support vectors of SVM will be interesting.
It is also interesting to observe how RNG changes by the use
of a kernel function in the distance metric. It is promising to
observe the intrinsic dimensionality of pattern distribution via
“graph embedding” into a higher dimensional space.
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