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Abstract—Recently, two different trends in neural network-
based machine learning could be observed. The first one are
the introduction of Bidirectional Long Short-Term Memory
(BLSTM) neural networks (NN) which made sequences with
long-distant dependencies amenable for neural network-based
processing. The second one are deep learning techniques, which
greatly increased the performance of neural networks, by making
use of many hidden layers. In this paper, we propose to combine
these two ideas for the task of unconstrained handwriting recog-
nition. Extensive experimental evaluation on the IAM database
demonstrate an increase of the recognition performance when
using deep learning approaches over commonly used BLSTM
neural networks, as well as insight into how different types of
hidden layers affect the recognition accuracy.

I. INTRODUCTION

The automatic unconstrained recognition of continuous,
writer independent handwritten text is a challenging task and
has been the focus of research for many decades [5], [21]. Even
though important progress has been achieved, the task still
remains challenging and can not yet be considered as solved.

A big step forward in reducing the overall error rate has
been the introduction of bidirectional long short-term memory
neural networks, a recurrent neural network architecture able to
deal with long-term dependencies. The output of the network
treated directly as character posterior probabilities [10] or input
features for hidden Markov models [14], gave a significant
boost to state-of-the-art recognition performances.

In this paper we investigate the impact of a extension to
neural networks, namely deep learning. Recent advances in
neural network research proposed strategies to train networks
with several hidden layers, a problems that previously seemed
unfeasible [3]. Existing deep learning approaches focus on
feed-forward neural networks, and very often convolutional
neural networks. In contrast, we focus on recurrent BLSTM
neural networks. This way, we can make use of long-term
sequence dependencies as well as the improved pattern classi-
fication power of deep learning architectures.

While specific multi-layer BLSTM neural networks have
been proposed before [9], [15] for the task of speech recog-
nition, we explore the applicability of using the ideas of deep
learning for the task of handwriting recognition. Instead of
suggesting one specific topology, we aim to give a broader
overview of how BLSTM neural networks can be extended
and the impact on the word error rate.

The rest of the paper is organized as follows. In Section II a
brief overview of related work is given. Section III introduces
deep BLSTM neural networks. An experimental evaluation
is presented in Section IV and conclusions are drawn in
Section V.

II. RELATED WORKS

Neural network-based pattern recognition has been given a
large amount of attention in the last few years. With increasing
computational resources and new learning strategies, large
neural networks can be build to better and better approximate
a good mapping. Without doubt the advent of deep learning
is a paradigm that already profound impact. In [1], [2], [24],
a thorough overview of the main ideas and progress is given.
Particularly for convolutional neural networks, has been done
or years [18].

Recurrent neutral networks, also a form of deep learning,
with long-term memory cells have been successfully used for
phoneme recognition [12] and with more layers also for more
complete speech recognition [11].

In fact, deep BLSTM networks for speech recognition has
enjoyed an increased attention as a research direction on its
own [9], [13], [15]. Apart from speech, multi-layer LSTM
networks have also occurred for different applications, such
as non-verbal, social signal classification [4], [7].

III. NEURAL NETWORKS

Historically, neural networks were restricted to only 1
or maybe 2 hidden layers while recurrent neural networks
have been considered unable to learn long-term dependen-
cies. The reason for both is the so-called vanishing gradient
problem [16]. This problem describes the limits of back-
propagation learning [22]. In short, the error gradient decreases
exponentially by each layer through which the error is prop-
agated. Hence, after a few layers, or time-steps in case of
recurrent neural networks, the gradient is nearly gone and
inaccuracies in the numerical representation of a number in
a computer can significant noise.

Several solutions to this problem have been proposed.
For sequence processing, long short-term memory (LSTM)
units [17] can act as a form of a memory cell. For multiple-
layered networks, deep learning approaches have been success-
fully applied for many applications.



Fig. 1. A plot of the atan and ReLU activation function and their derivative.

A. Deep Neural Networks

Deep neural networks describe network architectures con-
sisting of several hidden layers. To overcome the vanishing
gradient problem and make use of multiple hidden layers, two
approaches are possible. The first one, also called deep believe
networks is to build the network from input-to-output, one
layer at a time [3]. In each step, a new layer is trained via
unsupervised learning as a restricted Bolzmann machine. This
initialization phase places the weights very close to a local
optimum and supervised back-propagation steps can be used
to finalize the learning.

The other approach is to change the activation function
in the nodes of the neural network. Using a sigmoid activa-
tion function, particularly the logistic function, has been the
historical choice for network nodes, mainly because of three
reasons. It runs asymptotically from 0 (or -1) to 1 to simulate
a binary on/off state, the function is differentiable over the
entire domain, and the derivative is fairly easy to compute.
However, the derivative is close to zero for all but a few
values, which is one of the reasons that the error gradient
vanishes as it is propagated from the output layer to the input
layer. A surprisingly easy solution to that problem in the form
of rectified linear (ReLU) activation functions has recently
become very popular.

B. Rectified Linear Unit

A rectified linear function is basically a hinge function
which is zero for negative input values and the identity function
otherwise as depicted in Fig. 1. The function is extremely fast
to compute and has a simple derivative, 0 for negative input
values and otherwise 1. Usually the function is also clipped to
not exceed a large value, e.g., 20. The lack of differentiability
at x = 0 is not an important issue, since it can be set arbitrarily
to 0 or 1.

In [8] the authors argue that this simple activation function
can successfully be used to train deep neural networks without
any unsupervised pre-training. The 2014 ImageNet Large Scale
Visual Recognition Challenge [23], for example, was won by
such a a convolutional neural network with rectified linear units
(ReLU) in nearly 40 layers [25].

Fig. 2. Gate functions are labeled as g, input activation as f , output
activation as h, multiplication nodes as

∏
and the core node, which realizes
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Fig. 3. The overview of the BLSTM neural network used as a baseline
system.

C. Long Short-Term memory cells

Whereas layer-wise, unsupervised pre-training or ReLU
units help to deal with many hidden layers, the vanishing
gradient problem for recurrent neural networks can be suc-
cessfully avoided with an LSTM architecture [17]. An LSTM
unit is a second-order recurrent node, i.e. the weight of the
recurrent connection, the connections toward the node and the
connections leaving the nodes are not fixed but depend upon
the activation of dedicated gate nodes. Such a LSTM node
is depicted in Fig. 2. The core of the LSTM node,

∑
, is

a summation node with a recurrent connection of weight 1.
The input from the network after being squashed by node f ,
the recurrent connection, as well as the squashed core value
are each multiplied by the activation of the gate functions
g, usually a logistic function between 0 and 1. This turns
an LSTM cell basically into an memory cell, not unlike a
computer memory, which can be set or reset, and is left
unchanged otherwise.

A further extension is to process the sequence from both
sides and aggregating the results for each position in the
output layer. These kind of networks [10] deliver state-of-the-
art performance for handwriting recognition and are used as a
baseline system in this paper.

D. Deep BLSTM NN

In this paper we investigate the combination of ReLU lay-
ers and BLSTM layers for the task of continuous handwritten
text recognition. Starting from the classical BLSTM neural
network, we stack several feed-forward ReLU layers as well as
BLSTM layers and observe training behavior and recognition
accuracy. For the sake of a simpler notation, we describe a
network by the type of layer in the direction from the input



TABLE I. AN OVERVIEW OF THE DIFFERENT NEURAL NETWORK

ARCHITECTURES INVESTIGATED.

Network LSTM ReLU Weights

ID name cells nodes (times 10
5)

baseline I
2
M

2
O 200 0 1.05

A1 I
2
L

2
M

2
O 200 100 1.39

A2 I
2
L

2
L

2
M

2
O 200 200 1.44

A3 I
2
L

2
L

2
L

2
M

2
O 200 300 1.49

A3 I
2
L

2
L

2
L

2
L

2
M

2
O 200 400 1.54

B1 IM
2
LO 200 50 1.03

B2 IM
2
LLO 200 100 1.05

B3 IM
2
LLLO 200 150 1.08

B3 IM
2
LLLLO 200 200 1.11

C1 IM
2
M

2
O 400 0 2.67

C2 IM
2
L

2
M

2
O 400 100 2.37

C3 IM
2
L

2
L

2
M

2
O 400 200 2.42

C4 IM
2
L

2
L

2
L

2
M

2
O 400 300 2.47

to the output. Let I indicate the input layer, M (for memory)
a recurrent BLSTM layer, L (for linear) a ReLU layer and
O the output layer and a upper index ”2” indicates that this
layer exists twice, for forward and backward processing. The
standard BLSTM neural network is then described as I2M2O.

Note that all similar recurrent neural network can be split
into a directional part and a stationary part. The directional
part is the part of the network in which the processing
direction of the sequence plays a role, such as the input
layer and BLSTM layer. The stationary part, on the other
hand, aggregates the inputs of the forward and backward
sequence processing, i.e., the output layer, and does not inhibit
a processing direction in itself. The network shown in Fig. 4
is written in our notation as I2M2L2L2M2LO. This network
contains four directional layers after the input. Once the node
activations at each time step in the highest directional layer in
computed separately for the forward and backward direction,
the data is passed through a (stationary) ReLU layer and finally
to the output layer.

Obviously, the number of possibilities to extend a recurrent
deep neural network with further layers grows exponentially
with the depth of the network. We focus therefore on three
types of extensions. For ease of notation, we have separated
the types of extensions into three groups, A, B, and C. The
first one, type A, is done by adding directional ReLU layers
between the input layer and the BLSTM layer. The second type
of extension, type B, is to add stationary ReLU layers before
the output layer. Finally, in the last tested type of extensions,
type C, we add directional ReLU layers between multiple
BLSTM layers.

An overview of the different deep neural network exten-
sions, sorted according to the extension type, can be seen in
Table I.

IV. EXPERIMENTAL EVALUATION

A. Setup

The impact on using several ReLU and BLSTM layers is
evaluated on continuous text lines of the IAM database [20]1.

1http://www.iam.unibe.ch/fki/databases

Fig. 4. A deep IM2L2L2ML
2O network for handwriting recognition,

layers are drawn for time step t.

The database is split up into a training set of 6,161 text lines,
a validation set of 920 text lines and a writer independent test
set of 3421 text lines. The three sets are writer disjunct, i.e.,
a person who has contributed to any of the three sets did not
contribute to any of the other sets.

To focus on the text line recognition, we omit all processing
steps up to text line extraction. Once extracted, the text lines
are normalized in order to cope with different writing styles.
Finally, a sequence of feature vectors is extracted by a sliding
window of one pixel width moving from left to right over
the text line image. At each position of the sliding window,
nine geometrical features are extracted. Three global features
capture the fraction of black pixels, the center of gravity, and
the second order moment. The remaining six local features
consist of the position of the upper and lower contour, the
gradient of the upper and lower contour, the number of black-
white transitions, and the fraction of black pixels between
the contours. For more details on the text line normalization
operations and feature extraction, we refer to [19], [20].

For each setup, we trained 5 different, randomly initialized
neural networks. Training stopped when over the course of 5
iteration no further improvement on of the character error rate
the validation set was observed. The final evaluation was done
regarding the word error rate on the test set using a bi-gram
language model with 20 000 words.

B. Results

In Fig. 5 (and Table II) the average performances and
the standard deviation for the different network topologies are
shown in comparison with the reference system, with detailed
numbers given in Table II. Note that the baseline, although
the same system as in [10] or mentioned in [6], is given with
a different word error rate (25.49%). In that setup, several
neural networks were trained and the test set performance of
the best single network (according to a validation set) was
chosen. This article, on the other hand, is more concerned with



Fig. 5. Average word error rates of the test set for the networks. The baseline
system in indicated by the red line.

the average performance of different topologies. Following the
same strategy, it is also possible to train many networks and
select the best one, yet the comparison seems more difficult.

Several observations can be made. First of all, most of the
tested systems perform better than the reference system, but
not all. Particularly for topology types A and B, i.e., having
several ReLU layer before the BLSTM layer (type A) or before
the output layer (type B) seem to get worse as the number of
hidden layers increases. For the type C topology, i.e. stacking
ReLU layers between BLSTM layers, the performance does
not change significantly. Overall it can be seen that type C
topologies perform better than the other types.

Just the number of weights, or trainable parameters, which
is twice as high for type C systems, can not be the reason for
that behavior, since this number or parameters increase also
from A1 to A4 and B1 to B2 with degrading performance.
This is further underlined by the best character error rate on
the validation set during training and the final word error rate
on the test set, an indication of how well the network can
generalize the trained mapping. These error rates are given
in Table II. Again, networks of type C perform better than
networks of type A, B, or the baseline system. Networks of
configuration C have many more weights, thus the networks
can be better trained without losing the capability to generalize
from the training set to the testing set. Finally, it seems like
the number of ReLU layers – which increase from 0 to 3 in
all three configurations A, B, and C – has less effect than
the number of LSTM layers. Configuration A and B have one
LSTM layer, while configuration C has 2 LSTM layers.

The other difference that distinguishes type C systems

TABLE II. AN OVERVIEW OF THE ERROR RATES OF THE DIFFERENT

NEURAL NETWORK ARCHITECTURES INVESTIGATED.

CER Min CER WER

ID (val. set) (val. set) (test set)

baseline 14.28 13.48 27.11

A1 14.17 13.28 26.41

A2 14.56 13.90 27.04

A3 15.70 14.33 28.11

A4 14.73 13.90 27.10

B1 13.69 13.15 25.84

B2 14.02 13.45 27.17

B3 13.69 13.45 27.14

B4 13.92 13.47 28.29

C1 12.85 12.32 25.07

C2 13.11 12.60 25.25

C3 14.26 12.26 24.99

C4 13.31 12.56 25.77

among these systems is the number of recurrent layers. Type A
and B only have one BLSTM layer, whereas type C networks
have two. From these results, this seems to be a consistent
behavior.

V. CONCLUSION

Deep Learning has become an important trend in machine
learning, backed up by astonishing results in many different
areas, due to finding a workaround of the vanishing gradi-
ent problem, which renders back-propagation training very
difficult for many hidden layers. One successful strategy to
overcome this problem is to use ReLU units, which have a
derivative of either 0 or 1 and therefore maintain the error
gradient, or set it completely to 0.

On the other hand, a recent recurrent neural network
architecture has overcome the vanishing gradient problem by
creating completely differentiable memory cells through a
composition of simple nodes, implementing sigmoid activation
functions, addition, and multiplication.

In this paper we investigate the combination of both ideas
for the task of handwriting recognition. The investigated sys-
tems are BLSTM layers to deal with long-term dependencies
encountered in handwritten text. This system is extended by
adding layers between input and output layer. Depending upon
where, and what kind of layer, has been added, we tested three
different types of networks.

The main finding is that we can decrease the error rate
of this high-performing system by adding several layers.
However, it appears that simply adding layers to increase
the number of weights is not directly correlated with the
recognition rate. Instead, the type of layer seems to have a
big impact, with recurrent layers being more successful in
decreasing the error rate than feed-forwards ReLU layers.

In the future we will further extensions and also more
complex topologies. With an increase of parameters, the need
for further training data increases as well, but also the potential
for generalization. Hence, experiments on training one deep
network across several databases seem also to be a natural
way to go from here.
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