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Abstract—In this paper, we propose a novel Convolutional
Neural Network (CNN) based method that extracts the location
information (displacement features) of the maximums in the
max-pooling operation and fuses it with the pooling features to
capture the micro deformations between the genuine signatures
and skilled forgeries as a feature extraction procedure. After
the feature extraction procedure, we apply support vector
machines (SVMs) as writer-dependent classifiers for each
user to build the signature verification system. The extensive
experimental results on GPDS-150, GPDS-300, GPDS-1000,
GPDS-2000, and GPDS-5000 datasets demonstrate that the
proposed method can discriminate the genuine signatures and
their corresponding skilled forgeries well and achieve state-of-
the-art results on these datasets.

Keywords-Offline Signature Verification; Micro Deformation-
s; Displacement Features; Max-pooling; Feature Extraction

I. INTRODUCTION

Signature verification is a very challenging task that
aims to verify the genuine signatures and the corresponding
skilled forgeries for a specific user [11]–[13]. Generally,
signature verification systems are divided into two cate-
gories: online and offline. For online systems, the data is
collected as a sequence which includes the positions of the
pen, pressure coordinate sequence, pen elevation coordinate
sequence, etc [8]. For offline systems, the data is collected
from digital images. Since the dynamic information is not
available in offline signature verification systems, the task
becomes very challenging. In addition, the forgeries can
be deliberately imitated by practiced persons, which also
increases the difficulty for the verification systems.

To build a robust offline signature verification system,
extracting the discriminative features between the genuine
signatures and skilled forgeries from original images plays a
crucial role. Traditional verification systems apply handcraft-
ed feature extractors to extract the feature representations
from the original images, such as geometrical features [2],
Local Binary Pattern (LBP) features [4], Scale Invariant
Feature Transform (SIFT) features [15], etc. However, de-
signing a good handcrafted feature often need to set different
hyperparameters which are just suitable for the specific
tasks. Due to the limitation of the handcrafted features, many
deep learning based feature extractors are proposed in recent

years [5], [7], [16], [22]. However, capturing the micro
deformations or distortions between the genuine signatures
and skilled forgeries is still difficult for the existing methods.

In this paper, we propose a novel CNN based method that
extracts the location information (displacement features) of
maximums in max-pooling operations [24], [25] and fuses it
with the pooling features to capture the micro deformations
or distortions between the genuine signatures and their corre-
sponding skilled forgeries as a feature extraction procedure.
The motivation of this paper is to prevent the max-pooling
operation from removing the key micro deformations used
to discriminate genuine signatures and corresponding skilled
forgeries. In the feature extraction process, we train a CNN
between the genuine signatures and skilled forgeries on
a large scale dataset, named GPDS-10000 [3] to capture
the different behaviors of genuine signatures and skilled
forgeries. After CNN training process, we take the trained
CNN as a feature extractor to obtain the discriminative
features from original signature images. Then, we apply
linear SVMs as the writer-dependent classifiers for each user
to build the signature verification system and evaluate the
learned features.

The contributions of this paper are summarized as follows.

• We extract the displacement features and fuse it with
pooling features to capture micro deformations between
genuine signatures and skilled forgeries for offline
signature verification systems.

• We train a proposed CNN based model on a large scale
dataset.

• We obtain the state-of-the-art results on GPDS-150,
GPDS-300, GPDS-1000, GPDS-2000 and GPDS-5000
datasets.

The rest of the paper is organized as follows: Section II
discusses some handcrafted features and deep learning based
features related to our own. We introduce the proposed
method to capture the micro deformations between the
genuine signatures and skilled forgeries in Section III.
Finally, we present the experimental results and discussion
in Section IV, while Section V concludes this paper with
remarks and future work.
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Figure 1: Extracting the pooling features and the displacement features simultaneously. Here, the pooling size is 2× 2 with
stride 2. The displacement features capture micro-deformation within the pooling window. The displacement vector (-1,1)
means that the vertical displacement from the center to the maximum value is -1 and the horizontal displacement is 1.

II. RELATED WORK

A. Handcrafted Features for Offline Signature Verification

Traditional offline signature verification systems often use
different handcrafted features to train the writer-dependent
or writer-independent classifiers, such as geometrical fea-
tures [2], LBP features [4], SIFT features [15], and His-
togram of Oriented Gradients (HOG) features [20]. More
recently, there are many researches that focus on designing
robust features [9], [14], [26] to build signature verifica-
tion systems. In [14], Okawa proposed a feature extraction
method based on a Fisher vector (FV) with fused “KAZE”
features from both foreground and background signature im-
ages. The “KAZE” features consider the structures between
strokes and stroke contour information more effectively.
In [26], Zois et al. proposed the post-oriented grid features
which encode the geometric structure of the signatures by
grid templates. However, using the handcrafted features are
hard to discriminate the genuine signatures and the corre-
sponding skilled forgeries and often need to set different
parameters for specific tasks, which is hard to apply to other
verification systems and large scale applications.

B. Deep Learning Based Features for Offline Signature
Verification

In recent years, the deep learning based models have
widely applied in many fields, such as image classification
and detection [18], [21], [27], text recognition and detec-
tion [17], [19], [23], online and offline signature verifi-
cation [1], [6], [7], [16]. In the field of offline signature
verification, some deep learning based features are proposed
to capture the behaviors of different signatures [5], [7],
[10], [22]. In [22], Zhang et al. proposed an unsupervised
feature for offline signature verification based on Deep
Convolutional Generative Adversarial Networks (DCGANs),
which has a robust generalization ability compared to hand-
crafted features. In [7] and [5], Hafemann et al. proposed

a CNN based feature extraction approach, named “Signet”
to obtain the discriminative features not only between the
genuine signatures and skilled forgeries but also between
the different users. However, the “Signet” cannot capture
the micro deformations between the genuine signatures and
corresponding skilled forgeries and only trained on 531
different users cannot apply to large scale verification tasks.

Compared to the previous methods, the proposed method
can train with a huge number of users to capture the micro
deformations or distortions between the genuine signatures
and skilled forgeries, which is very useful for signature
verification systems.

III. CAPTURING MICRO DEFORMATIONS BY
DISPLACEMENT FEATURES

In this section, we introduce the proposed method to fuse
the displacement features and pooling features as discrim-
inative features to capture the micro deformations between
the genuine signatures and skilled forgeries for signature
verification systems. First, we introduce a normal CNN
based architecture trained between the genuine signatures
and forgeries. Then, based on the pre-trained CNN, we
introduce how to extract the displacement features and fuse it
with the pooling features in a combined architecture. Finally,
we introduce how to train the writer-dependent classifiers
based on the fused features.

A. Training a Normal CNN Between the Genuine Signatures
and Forgeries

To distinguish genuine signatures and skilled forgeries,
we design a CNN architecture with 3 convolutional and
pooling layers, 2 fully-connected layers and a softmax layer.
In the convolutional layers, the kernel size is 3 × 3 with
stride 1, and the number of the filters is 32, 64 and 128,
respectively. The pooling size is 2 × 2 with stride 2. In
the fully-connected layers, the first fully-connected layer
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Figure 2: Visualization of the pooling features and the displacement features of some samples on GPDS dataset. The first
row represents the original image and corresponding pooling features, the second row represents the displacement features.
Each column represents one convolutional filter. The visualization of displacement features is based on an HSV color model
whose color and intensity denote the direction and average length of the displacement features.
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Figure 3: The procedure of feature extraction and verification.

has 2048 nodes and reduces to 1024 in the second fully-
connected layer. Rectified Linear Unit (ReLU) is used as
the activation function for the network. The final softmax
layer contains 2 nodes, which is designed to judge whether
the input is a genuine signature or forgery. The cross-entropy
is used as the loss function to train the network.

B. Extracting and Fusing the Displacement Features with
Pooling Features

To further capture the micro deformations between the
genuine signatures and forgeries, we extract displacement
features [24], [25] from the first pooling layer in previous
pre-trained CNN and fuse it with the pooling features. Fig. 1
shows the procedure of the feature extraction. Here, the
pooling size 2×2 with stride 2, the value of the displacement

features both in horizontal and vertical directions belong to
[−1, 1]. Fig. 2 presents the pooling features and displace-
ment features of samples from the GPDS-10000 dataset
based on a Hue-Saturation-Value (HSV) color model whose
color and intensity denote the direction and average length
of the displacement features. The displacement features de-
scribe the location information of maximums in max-pooling
operation, which might capture some micro deformations of
forgery signatures when some skilled writers imitated the
genuine signatures.

The architecture that we used for fusing the pooling
features and displacement features is shown in Fig. 3. We
can see that the architecture for processing the displacement
features is the same as the pre-trained CNN without the



first convolutional and pooling layers. Here, we divide the
displacement into the horizontal and vertical directions and
apply the same architecture. We then fuse the pooling
features and displacement features in the last fully-connected
layer.

C. Training the Writer-dependent Classifiers

After the CNN training procedure, we extract the fused
features of each user from the CNN based feature extractor
and train the writer-dependent classifiers. For each user (not
included in CNN training procedure), we use the genuine
signatures as the positive samples and genuine signatures
from other users as the negative samples to build the training
set. Then, we choose the linear SVM as the writer-dependent
classifier to build the verification system. This procedure is
shown in Fig. 3.

To overcome the imbalanced problem that the negative
samples are much more than the positive samples, we use
different weights for the positive and negative class [7]. The
SVM objective function becomes,

min
1

2
wTw + Cp

M∑
i=1

yi=+1

ξi + Cn

N∑
i=1

yi=−1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0

(1)

where xi is a training sample with target value yi, ξi is the
slack variables, M and N are the numbers of the positive
and negative samples, Cp and Cn are the weights for the
positive and negative class,

Cp =
N

M
Cn (2)

For the testing procedure, we used the remaining genuine
signatures of the target user and the skilled forgeries to build
the test set to evaluate the performance.

IV. EXPERIMENT

In this section, we first introduce the experimental pro-
tocol of training CNN and the writer-dependent classifiers.
Then, we present the experimental results in detail.

A. Experimental Protocol

We conducted the experiments on GPDS-10000 dataset 1

to evaluate the proposed method. The GPDS-10000 is a
large scale dataset that contains 24 genuine signatures and
30 skilled forgeries for each user. The number of users
is 10,000, so the GPDS-10000 dataset contains 240,000
genuine signatures and 300,000 skilled forgeries and it
is very suitable for deep learning based methods. In our
experiment, we divided the GPDS-10000 dataset into two
parts, the first 5,000 users, and the final 5,000 users.

For the procedure of training CNN, we used the signatures
from the final 5,000 users. To normalize the input images,

1http://www.gpds.ulpgc.es/

we first resize all images to 128× 128. Then, we used 90%
data for training and 10% data for validation to train the
network. We use Adam as an optimizer to minimize the loss
function with mini-batch size 32. The model is trained with
40 epochs. The initial learning rate is set to 1e-4 and reduced
by a factor of 0.95 after each epoch. After the CNN training
process, we take the trained model as a feature extractor to
extract the fused features.

To build the signature verification systems, we trained
the linear SVMs as the writer-dependent classifiers for each
user. Compared to other state-of-the-art methods, we used
5 sub-datasets, GPDS-150, GPDS-300, GPDS-1000, GPDS-
2000, GPDS-5000 (the first 100, 150, 1,000, 2,000, 5,000
users of GPDS-10000 dataset) for final evaluation. For a
specific user, we randomly selected 5 genuine signatures as
the positive samples and 5 genuine signatures from each of
the final 5,000 users as the negative samples as the training
set. For the training process, the weights Cn are found
by grid search with 5-fold cross-validation, and the Cp is
calculated by Equation 2.

For the evaluation of the test set, the remaining genuine
signatures from the target user are used for calculating the
False Rejection Rate (FRR). The False Acceptance Rate
for the skilled forgeries (FARskilled) experiment has been
obtained with forgery samples of the target user. The False
Acceptance Rate for the random impostor (FARrandom)
experiment has been obtained with the genuine signatures
from all the remaining users. The Equal Error Rate for
skilled forgeries experiment (EERskilled) is calculated by
FARskilled = FRR, and the EER for the random impostor
experiment (EERrandom) is calculated by FARrandom =
FRR.

B. Experimental Results and Discussion

To evaluate the performance of the proposed method,
we test the proposed method on GPDS150, GPDS300,
GPDS1000, GPDS2000, and GPDS5000 datasets and com-
pared it with the state-of-the-art models [2], [4] and the
traditional CNN based features with SVMs. In [2], the
authors applied a Hidden Markov Model (HMM) on the
geometrical features (GF) for verification systems. In [4],
the authors extracted the LBP features to train the SVMs
as the writer-dependent classifiers. For the traditional CNN
model, it just extracts the features from the last fully-
connected layer. Then, using the SVMs for each user to
build the verification system. The experimental results are
the averages of all users with 10 trials.

Table I shows the results on skilled forgeries. This exper-
iment is to verify whether the query samples are genuine
signatures or skilled forgeries. We can see that only using
the SVMs with features extracted from a normal CNN can
achieve the desired results. The proposed method obtained
the best results than other state-of-the-art models on all
datasets. When the number of the randomly selected sample



Table I: The skilled forgeries experiment (EERskilled in %). The 5 samples and 10 samples represent the randomly selecting
5 or 10 samples of each user for training the SVMs.

Dataset HMM+GF [2]
(5 samples)

SVM+LBP [4]
(5 samples)

Traditional CNN
(5 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 11.48 16.45 8.34±0.52 7.45±0.41 6.32±0.35
GPDS-300 12.11 16.50 8.41±0.61 7.48±0.52 6.25±0.41

GPDS-1000 11.07 17.01 8.31±0.47 7.12±0.45 6.43±0.38
GPDS-2000 11.34 16.63 8.20±0.42 7.23±0.53 5.92±0.41
GPDS-5000 11.10 16.93 8.08±0.53 7.15±0.48 6.11±0.47

Table II: The random impostor experiment (EERrandom in %), where micro-deformations is not important.

Dataset HMM+GF [2]
(5 samples)

SVM+LBP [4]
(5 samples)

Traditional CNN
(5 samples)

Proposed
(5 samples)

Proposed
(10 samples)

GPDS-150 4.17 1.31 4.89±0.48 4.64±0.38 3.08±0.33
GPDS-300 4.32 1.45 4.77±0.52 4.72±0.54 3.23±0.42

GPDS-1000 4.37 1.63 4.82±0.58 4.91±0.43 3.17±0.35
GPDS-2000 4.44 1.73 4.94±0.42 4.95±0.55 3.22±0.41
GPDS-5000 4.53 1.63 4.56±0.43 4.58±0.41 2.84±0.43
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Figure 4: An example improvement of the displacement features. Here, all signatures are from the same user. The first
column is the original signature images, the second and the third columns are the displacement features extracted from two
filters.

increased to 10, the EERs are smaller than before, which
means that using more samples to train the SVMs can
improve the performance of the verification systems. In
addition, as the datasets become larger (the number of users
is increasing), the EER becomes higher when using the
traditional models. It means that the traditional models are
not general for all the users. The proposed method is more
stable than the traditional models when the dataset size
becomes huger.

Table II shows the results on random impostors. This
experiment is mainly to discriminate the different users.
Since the purpose of the feature extractor is to capture
different behaviors between the genuine signatures and forg-
eries, the proposed method did not obtain the best results
on this experiment. However, we achieved a competitive

performance compared to the state-of-the-art results. Even
if the model in [4] can classify the different users well,
the ability to distinguish the genuine signatures and skilled
forgeries of this model is far worse than the proposed
method.

Fig. 4 presents an improved example by using the pro-
posed method. We visualized the displacement features to
observe the micro different behaviors between the genuine
signatures and skilled forgeries. If we use traditional CNN
based features, they all belong to the same class (positive
class). But using the fused features by the proposed method,
they can be classified correctly. From Fig. 4, we can see
that the genuine signatures have similar behaviors on the
displacement features and the skilled forgeries are different
from the genuine samples in some places. For example, in



the bottom left corner of the first filter, the genuine samples
have some features in yellow and purple directions, but it
is rare in the skilled forgery samples. And in the second
filter, the displacement features can capture some blue and
purple directions in the genuine signatures, but in the skilled
forgeries, the corresponding position is green and red. It
means that the proposed method can capture some micro
deformations or distortions between the genuine signatures
and skilled forgeries.

V. CONCLUSION

In this paper, we proposed a novel approach that fuses
the proposed displacement features and pooling features as
a new feature to capture the micro deformations between
the genuine signatures and skilled forgeries. Then, we ap-
plied linear SVMs as the writer-dependent classifiers to
build a verification system. Extensive experimental results
demonstrate that the fused features can capture the micro
deformations or distortions between the genuine signatures
and skilled forgeries well, which is helpful for the offline
signature verification systems. For future work, we plan to
apply the proposed method to build an end-to-end offline
signature verification system and introduce the user infor-
mation to further improve the performance.
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