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Abstract

Similarity measures for time series are important problems for time series clas-

sification. To handle the nonlinear time distortions, Dynamic Time Warping

(DTW) has been widely used. However, DTW is not learnable and suffers

from a trade-off between robustness against time distortion and discriminative

power. In this paper, we propose a neural network model for task-adaptive time

warping. Specifically, we use the attention model, called the bipartite attention

model, to develop an explicit time warping mechanism with greater distortion

invariance. Unlike other learnable models using DTW for warping, our model

predicts all local correspondences between two time series and is trained based

on metric learning, which enables it to learn the optimal data-dependent warp-

ing for the target task. We also propose to induce pre-training of our model

by DTW to improve the discriminative power. Extensive experiments demon-

strate the superior effectiveness of our model over DTW and its state-of-the-art

performance in online signature verification.
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1. Introduction

Measuring similarity is one of the most important tasks for time series recog-

nition. For example, similarity gives an essential criterion for classifying time

series. Many applications, such as activity recognition, computational auditory

scene analysis, computer security, electronic health records, and biometrics (e.g.,5

handwritten signature verification) [1], use time series similarity for recognition.

One difficulty in measuring similarity is due to nonlinear time distortions. The

distortions can appear as temporal shifts, stretches and contractions, and other

various nonlinear temporal fluctuations.

To be invariant to nonlinear time distortions, Dynamic Time Warping (DTW) [2]10

has been widely utilized. Let A = a1, . . . ,ai, . . . ,aI and B = b1, . . . ,bj , . . . ,bJ

denote two time series, where both ai and bj are D-dimensional feature vectors.

As shown in Fig. 1(a), DTW establishes a “hard” correspondence between A

and B as a path on a two-dimensional plane, or an I×J binary matrix. Here the

term “hard” implies “one or zero;” the (i, j)-th element of the matrix becomes15

1, if ai and bj is “matched (i.e., corresponding),” and zero, otherwise. The

correspondence is determined to minimize the distance A and B by dynamic

programming (DP).

In DTW, several hand-crafted constraints are often assumed for controlling

the correspondence. Traditionally, monotonicity, continuity, and boundary con-20

(a) Hard correspondence
by DTW path

(b) Proposed 
(Deep attentive time warping)

(c) Soft correspondence
by attention weight matrix
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attention 
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Figure 1: (a) DTW conducts a hard correspondence between two sequences A and B. (b) The

proposed deep attentive time warping is composed of a bipartite attention module, which

generates an attention weight matrix Ps. (c) The attention weight matrix Ps represents soft

correspondence between two sequences A and B.
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straints have been utilized. These constraints are appropriate and acceptable

in many applications but encounter trade-off problems in the warping flexibil-

ity. If the constraints are too loose, DTW causes “over-warping” that cancels

important inter-class differences and loses its discriminative power. If we add

more constraints heuristically (like [3, 4]) to avoid over-warping, DTW then can25

not remove intra-class distortions sufficiently.

In recent years, deep metric learning has been applied to various classifica-

tion tasks. Deep metric learning is a machine learning technique to learn an

adaptive feature space that takes into account the similarity (or dissimilarity)

relationships among data [5–8]. In the typical formulation, a Siamese or triplet30

neural network is trained to learn an embedding space, where closeness between

embeddings (i.e., features extracted from the network) encodes the level of sim-

ilarities between the data samples. It enforces the embeddings to lie close if the

samples belong to the same class, and pushes them apart if different.

Deep metric learning for image classification tasks has had many successful35

results [9–11]. Whereas for time series, there is still room for improvement.

As detailed in Section 2, the past attempts either suffer from the loss of useful

temporal information [12–14] or are not explicitly invariant to nonlinear time

distortions [15–17].

In this paper, we propose a novel neural network-based time warping model,40

called deep attentive time warping1. The proposed method is based on a novel

learnable time warping mechanism with contrastive metric learning. Its key idea

is a novel attention model, called the bipartite attention module. As shown in

Fig. 1 (b), this module takes two time series as inputs and predicts an attention

weight matrix. This matrix represents the “soft” correspondence between all45

time steps of the two inputs, as shown in Fig. 1 (c). By training the bipartite

attention module appropriately for a specific task, we can realize time warping

that can mitigate the trade-off between robustness against time distortion and

1The code is available at https://github.com/matsuo-shinnosuke/deep-attentive-time

-warping.
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Figure 2: The proposed deep attentive time warping can be used in two scenarios. One is

a stand-alone scenario (a), and the other is a plug-in scenario (b-1) and (b-2). In (b-1) and

(b-2), blue boxes represent a neural network for contrastive representation learning.

discriminative power. In other words, the learned soft correspondence will en-

hance important inter-class differences and, at the same time, remove intra-class50

distortions.

The proposed method has great versatility and can be used for applications

in two different scenarios; one is a stand-alone scenario and the other is a plug-

in scenario. As shown in Fig. 2 (a), the former takes two inputs A and B and

determines their difference by utilizing their original feature representation. In55

the latter scenario, we use existing contrastive metric learning frameworks with

the standard DTW. Then, as shown in Figs. 2 (b-1) and (b-2), we replace

the DTW with the proposed method. Consequently, our deep attentive time

warping is combined with contrastive representation learning and the entire

framework becomes totally trainable for better (i.e., contrastive) time warping60

and feature representation.

We conduct extensive experiments to demonstrate the superior effectiveness

of the proposed method. We first conduct two experiments in the stand-alone

scenario to confirm how the proposed method provides reasonable time warp-

ing for the classification. We prove that the proposed method achieves better65

classification performance with effective warping than the other time warping

techniques through qualitative and quantitative evaluations on the well-known

Unipen [18] and the University of California Riverside (UCR) [19] datasets. We
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then conduct another experiment in the plug-in scenario. Specifically, through

an online signature verification experiment, we prove that the proposed method70

achieves state-of-the-art performance by outperforming other learnable time

warping methods.

The main contributions of this paper are summarized as follows:

• A novel neural network-based time warping method, called deep attentive

time warping, is proposed by introducing a bipartite attention module. It75

is learnable, task-adaptive, and improves the trade-off between robustness

against time distortion and discriminative power. We also prove a two-step

training process enhances the performance.

• We show the high versatility of the proposed deep attentive time warping

by using it in two different scenarios, stand-alone and plug-in.80

• Extensive experiments on more than 50 public datasets demonstrate the

superior effectiveness of the proposed method over DTW as a stand-alone

time warping model.

• We experimentally show that the proposed method in the plug-in scenario

achieves better performance than state-of-the-art learnable time warping85

methods in an online signature verification task.

2. Related Work

2.1. Dynamic time warping

DTW [2] (standard DTW) is a time warping method that has been used

for a long time as a time series similarity measure invariant to nonlinear time90

distortion. As noted in Section 1, DTW can determine the hard correspondence

between A and B. While DTW exhibits great distortion invariance, it may

cause over-warping that often results in incorrect classification.

There are many attempts to improve the performance of DTW. To sup-

press over-warping, early studies [2, 3] proposed to put a warping window as an95
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additional constraint to the standard monotonicity and continuity constraints.

Roughly speaking, ai is able to match with one of bi−w, . . . ,bi, . . . ,bi+w, where

w is the window width. A smaller w will have fewer over-warping cases. In [20,

21], the warping path is penalized by the difference of i and j of the matched

ai and bj . Soft-DTW [22] is an interesting attempt to replace the min opera-100

tion with a soft-min operation, which is realized by logarithmic and exponential

functions. With this replacement, DTW becomes differentiable and can be built

in various machine learning frameworks.

2.2. DTW with deep metric learning

In recent years, more efforts have been made on deep metric learning for105

time series [12–17]. They are based on a feature extraction mechanism with

a Siamese network, which is trained by a loss function evaluating the distance

between the features. The extracted features from time series are either global or

local. Compared to the standard DTW, these methods achieve better accuracy;

however, they do not treat the temporal distortion explicitly. This means that110

they do not warp one time series to another and, thus, is impossible to introduce

an explicit control of warping flexibility.

Several metric learning methods introduce DTW for an explicit removal

of temporal distortions. More specifically, they introduce the standard DTW

before or after a Siamese network. Prewarping Siamese Network (PSN) [23] and115

Time Aligned Recurrent Neural Networks (TARNN) [24] perform DTW between

two time series and then fed the warped result to a Siamese network for metric

learning. In contrast, Deep DTW (DDTW) [25] first extracts a sequence of local

features from each time series and then performs DTW. With the introduction

of DTW, these methods could achieve better performance than simple metric120

learning methods. Note that they do not learn the warping characteristics; their

temporal distortion removal ability relies on the standard DTW.

Few methods [26, 27] have been proposed for learning warping characteris-

tics. They calculate a quasi-binary matchability Φ(i, j) between each (i, j) pair.

Then, all IJ point-wise distances between i ∈ [1, I] and j ∈ [1, J ] are aggre-125
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gated by using Φ(i, j); if Φ(i, j) ∼ 1, the distance between i and j is taken into

account. Since the matchability is determined independently for each (i, j) pair

by a neural network, it is time-consuming to have all IJ matchability results.

More importantly, this independent determination process cannot control the

global warping characteristics, which have been carefully treated even in the130

standard DTW.

Furthermore, there is a preliminary conference paper of this work [28] and

this paper contains significant differences from it. First, we newly propose a

plug-in scenario, where our deep attentive time warping is utilized as a dif-

ferentiable module in a large classification system. We further confirmed that135

the plug-in usage of our technique achieves the state-of-the-art performance in

large-scale signature verification tasks. Moreover, for the stand-alone scenario,

we conduct more extensive comparison experiments on over 50 classification

tasks in UCR dataset, whereas only four tasks have been tackled in [28]. Tech-

nical details are also newly elaborated in this paper.140

3. Deep Attentive Time Warping

3.1. Overview

We propose deep attentive time warping, a novel neural network-based time

warping method. As noted in Section 1, the proposed method can be used to

evaluate the distance/dissimilarity between two time series (e.g., series of raw145

signals or deep features) A and B in its stand-alone scenario of Fig. 2 (a). It

also can be used as an attention-based feature extractor in its plug-in scenario,

as shown in Fig. 2 (b).

As shown in Figs. 1 (b) and (c), the bipartite attention module generates the

attention weight matrix Ps, which represents time warping between A and B150

as a soft temporal correspondence. The bipartite attention module is trained

by metric learning with contrastive loss. The resulting matrix Ps is expected

to provide not only distortion invariance but also discriminative power, both of

which are appropriate for the target task.
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Figure 3: Overview of the bipartite attention module.
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Figure 4: The time warping by the attention weight matrix.

3.2. Time warping with the bipartite attention module155

The detail of the bipartite attention module is shown in Fig. 3. In the bipar-

tite attention module, two multivariate time series A and B are first combined

by “outer concatenation” to have a two-dimensional array of the concatenated

vectors of ai and bj (i.e., a third-order tensor). Specifically, by replicating A

horizontally J times and B vertically I times, we have two I × J ×D tensors160

and concatenate them as an I × J × 2D tensor. The tensor is then input to a

Fully Convolutional Network (FCN) which functions as an attention model. In

this paper, we utilize U-Net as an FCN.

Before outputting an attention weight matrix Ps, a row-wise softmax opera-

tion is applied to the output of the FCN, so that the sum of the values in the rows165

becomes 1. This operation is important for using Ps as the soft-correspondence,

as shown in Fig. 1 (c). Consequently, the attention weight matrix Ps is used

for warping of B, as shown in Fig. 4 (a). The time warping of B is simply given

by the matrix product PsB and expected to be similar to A. In a similar way,

we also have another matrix Pt, which warps A to be PtA ∼ B, as shown in170
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(a) Pre-training with DTW

attention weight
matrix 

(b) Contrastive learning

DTW

bipartite 
attention 
module

bipartite 
attention 
module

distance

Figure 5: The bipartite attention module is optimized in a two-step manner. In the first step,

The module is pre-trained to mimic DTW, and in the second step, the module is optimized

by contrastive training.

Fig. 4 (b). The matrix Pt is given by first transposing the output of FCN and

then applying the row-wise softmax operation.

As clarified above, the matrix Ps (and Pt) is used as an attention for control-

ling the time series B (A) to be similar to A (B). The bipartite attention module

drives the matrices Ps and Pt at the same time by utilizing two-dimensional175

nature of the outer-concatenated representation of A and B. In other words, A

is used to attend individual elements of B and vice versa. This mutual attention

is analogous to the cost matrix of the so-called bipartite matching problem. We,

therefore, call our special attention scheme bipartite attention and differentiate

from popular attention schemes such as additive attention [29] and dot-product180

attention [30, 31].

Since we use an FCN (U-Net) in the bipartite attention module, the proposed

method, theoretically, can handle time series samples with variable lengths.

Namely, the lengths I and J can be different among samples. In the later

experiments, however, we use a fixed-length time series by following the tra-185

ditional experimental setup of the comparative methods (such as DDTW and

PSN). This fixed-length condition also allows efficient batch-based training.

3.3. Learning attention model with contrastive loss

To achieve time warping with sufficient time distortion invariance and dis-

criminative power for a specific task, we learn the bipartite attention model

with the following dual contrastive loss:

L(A,B) = Ls(A,B) + Lt(A,B). (1)
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Both Ls and Lt are formulated as a contrastive loss [32] specialized for the

proposed method. More specifically, Ls is formulated as

Ls(A,B) =


1
ID‖A−PsB‖2F if a same-class pair,

max
(
0, τ − 1

ID‖A−PsB‖2F
)

otherwise,

(2)

where τ is the hyper-parameter for margin. ‖ · ‖F denotes the Frobenius norm.

If A and B are a same-class pair, the distance between the input A and the190

warped input PsB is minimized. If not, their distance is optimized to be larger

than τ . The other loss Lt is defined by using ‖B − PtA‖F and J (the length

of B), instead. Fig. 5 (b) summarizes the above process to train the bipartite

attention module.

It should be emphasized that the above contrastive learning has a clear195

advantage over the standard DTW. The objective of the standard DTW is to

minimize the distance between two time series regardless of whether they belong

to the same class or not. Therefore, the standard DTW often underestimates

the distance for different-class pairs. In contrast, the proposed method considers

their classes and therefore can have appropriate time distortion invariance and200

discriminability at the same time.

3.4. Pre-training with the standard DTW

The proposed deep attentive time warping has much more warping flexibil-

ity than the standard DTW. As reviewed in 2.1, several constraints, such as

monotonicity and continuity, are imposed to control the warping path in the205

standard DTW. Since the proposed method does not have such constraints, it

has higher flexibility. However, of course, too much flexibility is not appropriate

for many applications.

We, therefore, introduce a pre-training phase with the standard DTW so

that the proposed method can mimic the DTW before starting its main training

phase. Specifically, as shown in Fig. 5 (a), we prepare a binary matrix PDTW

showing the DTW path between A and B, then pre-train the FCN to minimize
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the following loss function:

Lpre(Ps,PDTW) =
1

IJ
‖Ps −PDTW‖2F. (3)

After the above pre-training phase, the attention model is further trained

using the contrastive loss, as described in Section 3.3. By this two-step train-210

ing scheme, the proposed method can avoid excessive warping flexibility, while

keeping more flexibility than the standard DTW. We confirm the positive effect

of pre-training through ablation studies in later experiments.

4. Preliminary Experiments in Stand-Alone Scenario

We conducted the experimental evaluation of the proposed deep attentive215

time warping in the stand-alone scenario. As shown in Fig. 2 (a), this scenario

uses the proposed method for calculating a distance between two time series

and then the distance can be used in, for example, a nearest-neighbor classifier.

First, we conduct qualitative evaluations and show the behavior of the proposed

method on the online handwritten character dataset, called Unipen, as a simple220

example. Next, we conduct quantitative evaluations and show the proposed

method has a better trade-off between robustness against time distortion and

discriminative power than DTW on 52 datasets of the famous UCR Archive.

Note that the experiments in this section mainly aim to confirm the time

warping ability of the proposed method, and thus comparative study will be225

made with rather traditional DTW methods. The comparisons with state-of-

the-art learnable time warping methods will be shown in the next section.

4.1. Qualitative evaluations using online handwritten samples

4.1.1. Unipen Dataset

Unipen [18] is comprised of several subsets and we used the most popular230

ones, Unipen 1a (digits, 10 classes, 7,562 samples in total), Unipen 1b (upper-

case alphabet, 26 classes, 6,039 samples), and Unipen 1c (lowercase alphabet,

26 classes, 10,712 samples), for the evaluation. Each sample is a sequence of
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2D pen-tip coordinate vectors. For the detailed comparison with fixed-length

methods (such as SVM, 1D-CNN, and Siamese), linear resampling is performed235

on each sample so that their temporal length was 50. The 2D coordinates were

normalized to the range [−1, 1]. For each class, 200 samples were randomly

selected for validation, and other 200 for test. All the remaining samples were

used for training.

4.1.2. Implementation details240

The network architecture in the bipartite attention module follows the orig-

inal U-net [33], except for an additional batch normalization layer after each

convolutional layer. The learning rate was set to 0.0001, and Adam [34] was

used as the optimizer. Before pre-training, the network weights were initial-

ized by He initialization [35]. The batch size was set to 512. During training,245

same-class and different-class pairs were loaded in a ratio of 1 : 2. The hyper-

parameter τ in the contrastive loss was set to 1. The maximum iterations for

pre-training of Fig. 5 (a) and the main contrastive training of (b) were set

at 1, 000 and 10, 000, respectively; and the best model (i.e., the best iteration

number) was chosen by the evaluation with the validation set.250

For quantitative evaluation, we conducted a classification experiment using

the distance by the proposed method. For each test sample, its distances to

all training samples were calculated by the proposed method and the k-nearest

neighbor classification was performed to determine its class label atk = 1. As

the distance between A and B, we use the following “symmetric” distance:

d(A,B) =
1

ID
‖A−PsB‖2F +

1

JD
‖B−PtA‖2F. (4)

The proposed method achieved 99.0, 98.0, and 95.5% classification accuracies

for Unipen 1a, 1b, and 1c, respectively, whereas the standard DTW achieved

98.4, 96.0, and 94.1%. This proves the proposed method achieved sufficient

accuracies and, therefore, the following qualitative evaluation results are reliable

enough.255
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Figure 6: A visualization of the matching path of the improved samples compared with DTW.

The character in the red box shows the ground truth.

4.1.3. Qualitative evaluation results

Figs. 6 (a) and (b) show the results on three test samples of Unipen 1b and

1c, respectively. Those test samples are correctly classified by the proposed

method and not by DTW. For each test sample, the top three nearest neighbors

by distance of the proposed method and those by the DTW distance are shown.260

The attention weight matrices and the DTW matching paths are also shown.

In Fig. 6 (a), the proposed method classifies the test sample as ‘B’ correctly

by attention matrices that resemble the DTW path. In contrast, DTW clas-
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Table 1: Error rates (%) between confusing classes (Unipen). Error rates in red indicate the

least rate of each case.

Unipen 1b Unipen 1c

Method ‘J’ vs. ‘T’ ‘U’ vs. ‘V’ ‘g’ vs. ‘y’ ‘h’ vs. ‘k’ ‘h’ vs. ‘n’

ours 3.5 6.5 3.0 3.0 6.5

DTW 14.0 11.5 12.0 8.0 10.0

sifies this ‘B’ as ‘R’ incorrectly. It should be emphasized that the proposed

method provided an almost meaningless attention matrix between ‘B’ and ‘R,’265

intentionally. This is because the proposed method tries to differentiate them

as an expected effect of its contrastive learning. Similar attention matrices are

found in other cases. Since DTW has no such function, it always gives smooth

correspondence and gets a small distance that causes misclassification.

The third nearest neighbor of ‘J’ in the middle column of Fig. 6 (a) shows270

another benefit of the proposed method. This ‘J’ shows a different stroke order.

Since the proposed method does not have a strict monotonicity constraint, its

attention map deals with the stroke order variation. From these results, we can

observe that the proposed method has an appropriate time warping flexibility

that realizes both sufficient time distortion invariance and discriminability.275

Fig. 7 shows the distribution of test samples by the multi-dimensional scaling

(MDS). Three distance metrics, Euclidean, DTW, and the proposed method,

are used for these MDS visualizations. For the proposed method, the distance

between a pair of test samples A and B is evaluated by (4).

These distributions prove that the distance by DTW is more discriminative280

than Euclidean, and the distance by the proposed method is far more discrimi-

native than DTW. For example, the overlap between ‘U’ and ‘V’ in Unipen 1b by

the DTW distance disappears in the proposed method. The contrastive metric

learning in the proposed method realizes this discriminability, as expected.

Table 1 shows the error rates for binary classifications between ambiguous285

class pairs in Unipen 1b and 1c. Fig. 8 shows the normalized histograms of the
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(a) Unipen 1b

Euclidean
(b) Unipen 1c

DTW Proposed method

A / a B / b C / c D / d E / e F / f G / g H / h I / i
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Figure 7: The visualization of the test samples by MDS on (a) Unipen 1b and (b) 1c.

distances by DTW and the proposed method for the ambiguous class pairs in

Unipen 1b. The histogram of DTW shows a large overlap between the same

and different-class pairs, whereas the proposed method does not. These results

also prove the sufficient discriminative power of the proposed method.290

4.2. Quantitative analysis on UCR dataset

4.2.1. UCR Dataset

The University of California Riverside (UCR) Time Series Classification

Archive (2015 edition) [19] is a famous benchmark that is comprised of 85 dif-

ferent univariate time series datasets. Among them, we selected 52 datasets295

satisfying the following two conditions. The first condition requires that more

than 100 training samples are available. The second requires that the sample

15



same-class
different-class

(a) ‘J’ vs. ‘T’ (b) ‘U’ vs. ‘V’

Figure 8: Distance histograms for two confusing class pairs, ‘J’ vs. ‘T’ and ‘U’ vs. ‘V,’ of

Unipen 1b. For each pair, the left histogram is about DTW distance and the right is the

proposed method.

length (I and J) should be less than 1,000. The proposed method can, the-

oretically, deal with any sample length (even longer than 1,000); however, in

practice, too long of samples cause memory issues (like other trainable time300

warping methods). In each dataset, all the samples are already regulated to

have the same length. UCR prepares a training sample set and a test sample

set for each dataset. Among the training samples, 90% is used for training and

10% for validation. All time series were standardized for each channel to have

a mean of zero and a variance of one.305

4.2.2. Implementation details

The model architecture, learning rate, optimizer, hyper-parameter, number

of iterations, and inference protocol are the same as 4.1.2. The batch size was

determined for the maximum memory utilization of the GPU (Tesla V100).

We compared the proposed method with the standard DTW (DTW) [2],310

window-DTW (w-DTW) [2] and soft-DTW (s-DTW) [22]. The optimal values

of the hyperparameters in the comparative methods, as well as the proposed

method, were chosen by the validation set2. As noted above, 10% of UCR

training set were used as the validation set. For example, the hyperparameter

γ in s-DTW was chosen from 0.01, 0.1, 1, 10, 100 using the validation set.315

2Exceptionally, the value of the hyperprameter “window size” in w-DTW was taken from

the list of https://www.cs.ucr.edu/~eamonn/time series data 2018/.
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Table 2: Error rates by the proposed method (ours) and the comparative methods. Error

rates in red and blue indicate the least and the second least rates, respectively. If an error

rate of a comparative method is printed in bold, the proposed method was superior to the

comparative method with statistical significance at the 5% level by McNemar’s test. If italic,

the proposed method is inferior with significance at the 5% level.

Dataset Train Test Class Length DTW w-DTW s-DTW ours w/o pre-train.

Adiac 390 391 37 176 39.64 38.87 41.94 42.46 28.13

ChlorineConcentration 467 3840 3 166 35.16 35.16 35.42 18.72 18.41

Computers 250 250 2 720 37.60 43.60 34.80 37.20 40.00

CricketX 390 390 12 300 24.36 24.87 22.82 28.21 25.90

CricketY 390 390 12 300 25.13 25.13 25.90 24.87 29.74

CricketZ 390 390 12 300 24.36 29.49 21.79 23.33 28.97

DistalPhalanxOutlineAgeGroup 400 139 3 80 23.02 23.02 23.74 33.81 30.22

DistalPhalanxOutlineCorrect 600 276 2 80 28.26 27.54 23.91 25.36 26.81

DistalPhalanxTW 400 139 6 80 41.01 41.01 39.57 38.13 38.85

Earthquakes 322 139 2 512 28.78 31.65 22.30 25.90 25.18

ECG200 100 100 2 96 23.00 23.00 18.00 9.00 13.00

ECG5000 500 4500 5 140 7.56 7.49 7.27 9.40 7.00

ElectricDevices 8926 7711 7 96 40.50 38.28 39.37 41.33 40.37

FaceAll 560 1690 14 131 19.23 18.28 20.24 16.51 17.34

FacesUCR 200 2050 14 131 9.51 8.39 8.63 4.44 5.90

FiftyWords 450 455 50 270 30.55 27.69 20.44 18.90 19.12

Fish 175 175 7 463 17.71 16.57 13.71 8.00 5.71

FordA 3601 1320 2 500 44.70 32.20 39.02 8.48 10.00

FordB 3636 810 2 500 38.02 37.90 41.98 19.14 19.51

Ham 109 105 2 431 52.38 52.38 41.90 25.71 30.48

InsectWingbeatSound 220 1980 11 256 63.84 42.98 44.09 44.95 47.63

LargeKitchenAppliances 375 375 3 720 26.40 26.13 18.40 43.20 45.60

MedicalImages 381 760 10 99 26.32 25.26 24.87 31.71 34.61

MiddlePhalanxOutlineAgeGroup 400 154 3 80 50.00 50.00 54.55 48.70 55.19

MiddlePhalanxOutlineCorrect 600 291 2 80 30.24 30.24 27.84 17.18 21.31

MiddlePhalanxTW 399 154 6 80 49.35 49.35 48.05 50.00 45.45

NonInvasiveFetalECGThorax1 1800 1965 42 750 20.97 18.47 19.80 22.14 49.26

NonInvasiveFetalECGThorax2 1800 1965 42 750 13.54 12.26 11.45 18.73 15.78

OSULeaf 200 242 6 427 40.50 43.39 35.12 25.21 17.77

PhalangesOutlinesCorrect 1800 858 2 80 27.16 27.16 28.09 21.68 19.46

Plane 105 105 7 144 0.00 0.00 0.00 0.00 0.00

ProximalPhalanxOutlineAgeGroup 400 205 3 80 19.51 19.51 20.98 17.56 19.02

ProximalPhalanxOutlineCorrect 600 291 2 80 21.65 20.96 23.02 8.59 9.97

ProximalPhalanxTW 400 205 6 80 24.39 24.39 25.37 24.39 22.44

RefrigerationDevices 375 375 3 720 54.67 57.87 54.13 44.27 67.20

ScreenType 375 375 3 720 60.80 64.27 65.60 64.27 59.20

ShapesAll 600 600 60 512 23.00 23.67 17.33 13.67 13.67

SmallKitchenAppliances 375 375 3 720 31.73 41.33 34.67 45.07 48.53

Strawberry 613 370 2 235 5.95 5.95 5.68 5.14 4.32

SwedishLeaf 500 625 15 128 20.80 15.20 17.44 7.36 9.76

SyntheticControl 300 300 6 60 0.67 0.67 0.67 0.33 0.00

Trace 100 100 4 275 0.00 5.00 1.00 0.00 0.00

TwoPatterns 1000 4000 4 128 0.00 0.68 0.00 0.00 0.00

UWaveGestureLibraryAll 896 3582 8 945 5.28 4.75 4.16 9.24 88.11

UWaveGestureLibraryX 896 3582 8 315 26.91 24.46 22.59 22.03 24.23

UWaveGestureLibraryY 896 3582 8 315 36.21 31.88 29.93 32.94 33.56

UWaveGestureLibraryZ 896 3582 8 315 34.06 32.80 32.89 29.09 34.34

Wafer 1000 6164 2 152 2.01 0.44 0.71 0.18 0.23

WordSynonyms 267 638 25 270 34.64 29.47 23.35 32.76 43.10

Worms 181 77 5 900 49.35 46.75 46.75 37.66 57.14

WormsTwoClass 181 77 2 900 42.86 41.56 35.06 38.96 48.05

Yoga 300 3000 2 426 16.37 15.67 14.07 17.10 42.87

All 23.58 21.69 21.39 20.21 26.96

Average 27.88 27.21 25.58 23.71 27.66

Wins 5 5 15 23 15
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Figure 9: Error rate comparison. Each point corresponds to one of the 52 datasets.

We used the 1-Nearest Neighbor (1-NN) rule as the classifier. More specif-

ically, we used the distance given by the proposed method and then compared

each test sample with all training samples. The class of the training sample

with the minimum distance was considered as the classification result. We used

the same 1-NN classification approach for the comparative methods.320

4.2.3. Quantitative evaluation results

Table 2 shows classification error rates by the proposed method (ours),

and the comparative methods, i.e., DTW, w-DTW, s-DTW, on 52 UCR2015

datasets3. As an ablation study, the performance of the proposed method with-

out pre-training phase is also listed in this table. The error rates in red and325

blue indicate the least rate and the second least rate, respectively.

For many datasets, the proposed deep attentive time warping achieved lower

error rates than the traditional DTW methods. This fact is confirmed by the

number of wins; the proposed method shows the lowest error rates for 23 among

52 datasets.330

Fig. 9(a) shows a pair-wise comparison between DTW and the proposed

method. Each point corresponds to one of the 52 datasets. The 36 points below

3In UCR2018 [36], we found six datasets that satisfy the same conditions as UCR2015.

The experimental evaluation results on these datasets are given in Appendix A.
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the diagonal line indicate that the proposed method achieved a lower error rate

than DTW for those datasets. Consequently, this figure also demonstrates a

higher effectiveness of the proposed method.335

As an ablation study, we observed the performance change by removing

the pre-training phase. The accuracies of the proposed method without pre-

training are shown in the rightmost column of Table 2 (“w/o pre-train.”) and

summarized in Fig. 9(b) as a pairwise comparison with the method with pre-

training. These results show that the positive effect of pre-training is confirmed340

on 36 datasets among the 52.

In order to make our evaluation more reliable, we conducted the McNemar’s

test between the proposed method and each comparative method. The test

results are shown in Table 2. If an error rate by a comparative method is

printed in bold, the proposed method was superior to the comparative method345

with statistical significance at the 5% level by McNemar’s test. If italic, the

proposed method is inferior with significance at the 5% level.

From the results of McNemar’s test, we can confirm the superiority of the

proposed method over the comparative methods. More specifically, among 52

datasets, the proposed method was superior to DTW, w-DTW, and s-DTW, and350

w/o pre-training with the statistical significance at the 5% level on, 20, 22, 18,

and 11 datasets, respectively. We can also see that inferior cases (italic) are much

less than superior cases (bold). The row “All” in Table 2 shows the error rates of

all test samples in all 52 datasets. McNemar’s test results in the “All” row also

shows that the proposed method was superior to all the comparative methods355

at the 5% level — Precisely speaking, the proposed method was superior even

at the 1% level.

In order to understand the characteristics of the proposed method, we ana-

lyzed the relationship between several dataset features (e.g., dataset size, time

length, etc.) and win-lost cases. Among these features, time length shows the360

most evident relationship, as shown in Fig. 10. This figure shows the histograms

of win cases and lost cases with respect to sample time length. To emphasize
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Figure 10: Histogram of win cases and lost cases with respect to time length. Note that we

only picked up the datasets that show statistical significance at the 5% level by McNemar’s

test in Table 2 for emphasizing the difference between win cases and lost cases.

the difference between win cases and lost cases, we picked up the datasets that

show statistical significance at the 5% level by McNemar’s test in Table 2.

The histogram suggests that the lost cases are found for the datasets with365

very short or very long time lengths. A possible reason for this phenomenon is

the fixed network architecture of the bipartite attention module. For example,

for longer samples, the network is too shallow to exchange the information

between their beginning and ending parts. In future work, we can try to use

different network architectures according to the time length of samples.370

We further compare the proposed method to results reported in literature.

We collected results that propose distance measures for a 1-NN classifier, sim-

ilar to the proposed method. The comparative methods use a wide variety of

distance measure mechanisms, including derivative based methods, Complexity-

Invariant Distance (CID) [37], Derivative Transform Distance (DTDC) [38], and375

DTW Derivative Distance (DDDTW ) [39], dictionary distance based methods,

Bag of Patterns (BOP) [40] and Bag of Symbolic

Table 3 lists the methods and the number times the proposed method has

a higher accuracy over the comparison method (Wins), the number of times

it had a lower accuracy (Loses), the number of ties, and the total number380

of datasets used in the comparisons. Note, each comparison method reports

their results on different datasets within the 2015 UCR Time Series Archive.

Therefore, we only count the datasets that are available. Also, since we limit the
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Table 3: Comparison between proposed method and comparative methods on the 2015 UCR

Time Series Archive datasets. The total number of datasets for each method is determined by

the intersection of the datasets used by the proposed method and reported by the comparison

methods.

Proposed Method

Method Wins Losses Ties Total

BOP [40] 8 2 0 10

BOSS [41] 12 11 0 23

CID [37] 13 8 0 21

DDDTW [39] 8 3 0 11

DTDC [38] 9 13 0 22

MSM [42] 8 3 0 11

TWED [21] 9 2 0 11

WDTW [20] 7 2 0 9

proposed method to datasets with more than 100 training patterns, we exclude

the reported datasets with less than 100 training patterns.385

For most of the comparison methods, the proposed method performed much

better. For BOSS and CID, the proposed method only had a small advantage

and for DTDC , the proposed method had fewer wins. This demonstrates that

the proposed method is not only effective at providing an effective warping

method, but also a robust distance measure for classification.390

5. Experiments in Plug-in Scenario

We further conducted the experimental evaluation of the proposed deep at-

tentive time warping in the plug-in scenario of Fig. 2 (b). The aims of this

experiment are twofold. First, we evaluate the proposed method in a more

practical task that needs representation learning in addition to time warping.395

21



X

Y

P

Az

0 512 1024
In

(a) Reference signature

 

 

 

 

0 512 1024
 

(b) Genuine signature

 

 

 

 

0 512 1024
 

(c) Skilled forgery signature

Figure 11: Examples of online signatures in MCYT-100.

Second, we compare the performance of the proposed method with state-of-the-

art learnable time warping methods for the task.

We focused on online signature verification, which is a task to decide whether

a test signature is a genuine signature or a skilled forgery (imitated by a forger).

The reasons for using this task are as follows. The first and the most impor-400

tant reason is that several learnable time warping methods have been applied

to the same public dataset, MYCT-100. As far as the authors know, there are

no other common tasks to which various learnable time warping methods are

applied. Second, this task requires representation learning; recent performance

improvements on online signature verification owe to representation learning.405

Third, this task still needs further improvement; even though recent methods

achieve 1.0% equal error rate (EER), verification error should be further mini-

mized because of its expected reliability.
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5.1. Online Signature Dataset

As one of the most common datasets for online signature verification, we410

use MCYT-100 dataset [43]. This dataset contains 100 subjects, each having

25 genuine signatures and 25 skilled forgeries. Fig. 11 shows several examples

from the dataset. Each signature has five channels: 2D coordinates, pressure,

azimuth, and altitude angles of the pen tip. We resized the temporal length to

1,024 by following the experimental setup of the comparative methods (such as415

PSN and DDTW).

According to the tradition of the task, we conduct multiple experiments

under different train-test ratios. Specifically, the first η% of subjects (η ∈

{50, 60, 70, 80, 90}) were used for training and the remaining subjects for test-

ing. For testing, the first five genuine signatures of each subject in the test set420

were used as reference signatures. The remaining genuine signatures and all

the skilled forgeries were used as test signatures. For each test signature, its

distances to the corresponding five reference signatures were averaged. Based

on this averaged distance, all test signatures of all subjects were sorted to form

a ranking list. EER was finally calculated as the traditional evaluation metric425

of the task.

5.2. Comparative methods

In the plug-in scenario experiment, we used two elementary methods and

three state-of-the-art methods. The former methods are DTW [2] and simple

Siamese Network (Siamese). DTW takes either raw signatures or handcrafted430

features [44] as input. Siamese was learned with either a global contrastive

loss [32] or a local embedding loss [23].

The state-of-the-arts methods are Prewarping Siamese Network (PSN) [23],

Time-Aligned Recurrent Neural Networks (TARNN) [24], and Deep DTW

(DDTW) [25]. In the latter method, DTW is embedded in a metric learning435

framework to realize learnable time warping. More specifically, the original PSN

and TARNN use DTW before Siamese networks, whereas the original DDTW af-
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Figure 12: Three-step training process for the plug-in scenario (for PSN/TARNN). Each blue

box is the Siamese network for contrastive representation learning. Note that for DDTW, the

Siamese network is placed before the bipartite attention module.

ter. As the Siamese networks, PSN and DDTW employ CNN, whereas TARNN

employs RNN.

For the comparison, we plugged the proposed method in the above methods440

and observed how the performance changed. Specifically, we replace the DTW

module in PSN, DDTW, and TARNN by the proposed method and then train

the entire network by the process of 5.3.

5.3. Implementation details

Fig. 12 shows the three-step training process for the deep attentive time445

warping plugged in PSN, TARNN, and DDTW. First, the original model with

the standard DTW is trained with its original loss functions. (The details

can be found in the original papers [23–25].) Second, the bipartite attention

module is pre-trained with the loss (3), for providing a similar attention weight

matrix to the DTW result. Finally, the bipartite attention module is trained450

with the entire network, while keeping the weights of the Siamese network. It

is theoretically possible to train the entire network in an end-to-end manner.

However, our preliminary trials proved that this three-step process gives more

stable results.
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Table 4: EERs (%) of online signature verification on MCYT-100. EER in red and blue

indicate the least and the second least rates, respectively.

Percentage (η%) of Training Data

Method 90 80 70 60 50

DTW [2, 44] 4.00 3.00 4.17 4.37 4.60

w/ raw signatures 5.00 6.25 5.73 6.37 6.96

Siamese 5.50 6.80 6.27 7.33 8.40

w/ local embedding loss [23] 3.50 3.40 3.75 3.75 5.50

PSN [23] 1.50 2.25 3.17 2.75 3.00

+ ours (plug-in) 1.00 1.75 2.33 2.13 2.70

w/o pre-training 1.00 2.50 3.67 3.50 4.10

TARNN [24] 1.00 3.00 3.50 4.25 4.50

+ ours (plug-in) 0.50 2.25 2.67 2.88 2.80

w/o pre-training 1.50 2.50 3.17 3.25 5.00

DDTW [25] 1.00 2.20 2.53 2.25 2.40

+ ours (plug-in) 0.50 2.00 2.33 2.13 2.20

w/o pre-training 1.50 4.00 4.83 3.50 3.90

The network architecture of the bipartite attention module is the same as the455

stand-alone scenario. The learning rate was chosen from 0.1, 0.01, and 0.001

in Steps 1 and 3, and set to 0.001 in Step 2. The hyper-parameter τ in the

contrastive loss was set to 1.4 by using the validation set. Adam was used as

the optimizer. The training was conducted up to 10, 000 iterations in Steps 1

and 3, and up to 1, 000 iterations in Step 2. The batch size was set to 30, where460

10 are the same-class pairs and 20 are the different-class pairs).

5.4. Results

Table 4 shows the EERs on MCYT-100. The accuracy of the state-of-the-art

methods, i.e., PSN, TARNN, and DDTW, has all been improved by replacing
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Figure 13: Distance histograms by the proposed method and DDTW [25] on MCYT-100. The

horizontal axis is the distance and the vertical axis is normalized.

DTW with the proposed method. This proves that the proposed method is465

consistently effective as a plug-in to existing learnable time warping frameworks.

In addition, from the comparison between PSN and DDTW, the plug-in location

(i.e., before or after the representation learning module) is not very important.

Removing pre-training from the proposed method degrades the performance

significantly. This fact confirms the necessity of the proposed pre-training470

method in improving discriminative power and stabilizing the inference of bi-

partite attention matrices.

Fig. 13 shows the distance histograms of the same-class and different-class

pairs by the proposed method and DDTW. The proposed method shows a much

smaller overlap than DDTW. DDTW focuses only on contrastive representation475

learning; in contrast, the proposed method trains the attention weight matrix

(i.e., soft-correspondence) in contrastive learning, in addition to representation

learning. This makes the proposed method more discriminative than DDTW.

6. Conclusion

In this paper, we proposed a novel neural network-based time warping480

method, called deep attentive time warping. The proposed method is based

on a new attention module, called the bipartite attention module, between two
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time series inputs. The module is trained by contrastive metric learning to

achieve a learnable and task-adaptive time warping and to improve the trade-

off between robustness against time distortion and discriminative power. The485

effectiveness of the proposed method was confirmed through two scenarios. The

first was a stand-alone scenario, where the proposed method was used as a

learnable time warping method and compared with the standard DTW and

other time warping methods. Through qualitative and quantitative evalua-

tions with Unipen and UCR datasets, the expected effectiveness was confirmed.490

The second was a plug-in scenario, where the proposed method is embedded

in neural network-based metric learning frameworks with representation learn-

ing. Through a comparative study with state-of-the-art learnable time warping

methods, the effectiveness of the proposed method was further confirmed.

The limitations of this paper are as follows. First, in the current framework,495

the regulation of the warping flexibility relies on the pre-training to mimic the

standard DTW and the soft constraints implicitly imposed by the trained bipar-

tite attention module; this means no explicit penalty for the violation of several

reasonable regulations, such as monotonicity and continuity of warping. Al-

though we confirmed the performance superiority over the standard DTW with500

those warping regulations, there is still a possibility that the introduction of

some explicit regulations will further improve the performance. Second, we op-

timize the network architectures according to the characteristics of the dataset.

In this paper, we used the same architecture for all UCR2015 datasets, and

therefore the performance degrades for too long or too short time-series sam-505

ples, as revealed by the analysis in Section 4.2.3. From a practical viewpoint,

architecture optimization for better performance will be an important future

work. Third,

we have not directly utilized the soft-correspondence (represented by the

attention weight matrix) in the final distance evaluation. In fact, the attention510

weight matrix can be seen as a novel feature showing the relationship between

two time series, and therefore we can extract some useful features from it for

final distance evaluation and/or final decision making.
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Table 5: Error rate (%) on additional six datasets from UCR2018. Error rates in red and blue

indicate the least and the second least rates, respectively.

Dataset Train Test Class Length DTW w-DTW s-DTW ours w/o pre-train

Crop 7200 16800 24 46 33.00 28.83 31.46 37.13 32.13

FreezerRegularTrain 150 2850 2 301 10.00 9.30 6.84 0.00 0.00

GunPointAgeSpan 135 316 2 150 8.00 3.48 1.58 0.00 0.00

GunPointMaleVersusFemale 135 316 2 150 0.00 2.53 1.58 0.00 0.00

GunPointOldVersusYoung 136 315 2 150 16.00 3.49 0.00 0.00 0.00

PowerCons 180 180 2 144 12.00 7.78 9.44 0.00 0.00

Appendix A Result on datasets from UCR2018

In addition to results of UCR2015 in Table 2, we conducted the same ex-

perimental evaluation for UCR2018 [36]. In UCR2018, we found six datasets650

that satisfy the same conditions (the sample size, the time length, and the fixed-

length samples) as the UCR2015 experiment. Table 5 shows the error rate of

the datasets. Except for “Crop,” which contains many training samples benefi-

cial for 1NN classification by DTW, ours could achieve the best accuracy (even

perfect).655
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