論文

動的計画法に基づく単調連続2次元ワープ法の検討

内田　誠一†　迫江　博昭†

Monotonic and Continuous Two-Dimensional Warping Based on Dynamic Programming

Seiichi UCHIDA† and Hiroaki SAKOE†

あるまし　2画像間の最適一致を実現する画像間のマッピングとして定義される2次元ワープは、パターンに生じる変形に適応可能なテンプレートマッピング法とみなすことができる。本論文では新しい2次元ワープ法の枠組みを提案し、基礎的な考察を行う。本手法の第一の特徴は、2次元的な自由度をもつこと、パターンの位相を保存するワープを構成できることがある。この性質はワープに対する単調性および連続性制約により実現される。第2の特徴は、画像全体での最適化が保証されるように構成された動的計画法（DP）を、最大一致の探索法として用いる点である。DPの利用により、獲得関数に対する微分可能性の制約がないなどの特長も生じる。実験により、提案した手法の基本的な特性を確認した。

キーワード：2次元ワープ、動的計画法、変形モデル、画像間距離、パターンマッピング、構造解析手法

1. まえがき

2画像間の最適一致を実現する画像間のマッピング、あるいはその決定過程を、本論文では2次元ワープと呼ぶ。この2次元ワープは画像から記述されたパターンの変形に適応可能なマッピング手法とみなすことができる。また一方のパターンを画像をプリミティブとするモデルと考えると、一種の構造解析手法にもなっている。2次元ワープ法の多くは、最大一致を探索する最適化手法として反復解法[1]〜[4]、若しくは動的計画法（Dynamic Programming, 以下 DP）を用いている。これの中 DPに基づく手法は、1）解の最適性を保証できる、2）評価関数の微分可能性の制約がなく、3）隣接画像間の相互的な位置関係を不平等式等式の形で制約できる、4）演算誤差の集中による不安定性がない、という特長をもつ。

DPに基づく2次元ワープ法は、これまでにもいくつか検討されているが、予想されるアルゴリズムの複雑さ、または計算量の多くから、自由度を高くする解の最適性が不十分な方法となっており、確立された方法は知られていない。従来法の例として、垂直独立に1次元 DP を施す手法[5]、水平に1次元 DP を施す手法[6]、経方向の DP の内部で経方向の DP を行う手法[7], [8]、対角方向に対応済みの形状領域を拡張していく手法[9]〜[11]が挙げられる。これらの手法では特徴の特徴の伸縮は吸収可能であるが、傾きや回転には対応できず、その意味で完全な2次元の自由度をもたない。このため、スペクトログラムのマッピング[7], [8]などの特殊な変形を扱う場合を除いて、一般的な画像マッピング問題への有効性はあまり期待できない。

一方 Levin ら[14]は、2次元的な自由度をもち、かつ画像全体で最適化が保証される、DP 基づくワープ法を提案した。しかしワープに対する制約条件が単調性だけであるために、予想される変形や計算量の

†九州大学大学院システム情報科学研究院
Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka-shi, 812-8581 Japan

点で非現実的な手法となっている。

本論文では、Levinらの手法[14]を出発点とし新たに連続性を導入した、単調連続性を保存する2次元ワープ法の枠組みを提案し、基礎的な考察を行う。単調連続2次元ワープ法では、隣接する2画素がワープ後も上下左右関係と近傍関係を保つ単調連続条件が制約として用いられる。これにより2次元の自由度をもちながら、パターンの位相も近似的に保存されるワープが実現される。もう一つの特長として、画像全体としての最適性が保証される点がある。本論文では、最適な単調連続2次元ワープを求めるアルゴリズムについて述べる。

このアルゴリズムの計算量は、連続性条件が考慮されていないLevinらの手法[14]よりも大幅に少ない。しかし依然として画像サイズについて指数オーダーの計算量を要するため、現実的なサイズの画像を扱うことは困難である。そこで、ワープの自由度を保ったまま、計算量を低減するために、枝分れの導入を検討する。この枝分れによる多項式時間で準最適解を求めることが可能になる。

2. 単調連続2次元ワープ

2.1 2次元ワープの定式化

以下のワープの基本单位を画素として定式化を行う。2画素A={a(i,j)} (i,j=1,...,N)，B={b(x,y)} (x,y=1,...,M)を考える。2次元ワープは、このような定義の最小値を与えるワープ関数x(i,j),y(i,j)により定義される(図1)。

$$D(A, B) = \min_{a(i,j)} \sum_{i=1}^{N} \sum_{j=1}^{N} |a(i,j) - b(x(i,j), y(i,j))|$$

(1)

以後、{b(x(i,j), y(i,j))}を \(\bar{B} \)と表す。

2.2 単調性および連続性条件

ワープ関数に対する制約として単調連続性条件を用いる。ここでは単調性を画像の上下左右関係に従ってワープ後も保存されることと定義する(図2(a))。次に連続性を隣接する2画素のワープ後的位置が図2(b)に示す近傍内にあることと定義する。この単調性および連続性を同時に満たすようなワープを構成するために、ワープ関数に次の条件を与える(図2(c))。

$$0 \leq x(i,j) - x(i-1,j) \leq 2$$

(2)

$$0 \leq y(i,j) - y(i,j-1) \leq 2$$

(3)

$$|x(i,j) - x(i,j-1)| \leq 1$$

(4)

$$|y(i,j) - y(i-1,j)| \leq 1$$

(5)

ほかに境界条件

$$x(1,j) = y(i,1) = 1, \ x(N,j) = y(i,N) = M$$

(6)

と、必要に応じて整合条件(間隔w>0)を用いる。

$$|x(i,j) - i| \leq w, \ |y(i,j) - j| \leq w$$

(7)

以上の条件(2)～(7)は方程式をもつ。すなわち、評価関数(1)が最小化される保証があれば、A, Bの値を同時にi ↔ j, x ↔ yと交換しても原理的に同じワープが求まる。

2.3 問題の分解

画像Aの第i行を

$$a(i) = (a(i,1), \ldots, a(i,j), \ldots, a(i,N))$$

(8)

と表す。a(i)のB上の像を局所ひずみパターンと呼び、xy(i)で表す(図3(a))。

$$xy(i) = ((x(i,1), y(i,1)), \ldots, (x(i,j), y(i,j)), \ldots, (x(i,N), y(i,N)))$$

(9)

xy(i)としては、単調連続性(3), (4), 境界条件(6), よび整合条件(7)を満たす範囲でさまざまな形状が
図3 二元連続2次元ワープにおける、(a)局所ひずみパターン $xy(i)$ の例、(b) その x、y 方向への分解、(c) $XY'(xy(i))$ に含まれる $xy(i-1)$ の x、y 方向での領域、(d) および Levinらの手法[14]での $XY'(xy(i))$

Fig.3 Local warp pattern $xy(i)$ and its precedings set $XY'(xy(i))$。

選べる。その集合を $XY(i) = \{xy(i)\}$ と表す。局所ひずみパターンの導入により、式 (1) の 2 次元的な組合せ最適化問題は、次のように $xy(i)$ の最適な 1 次元系列 $xy(1) \cdots xy(N)$ を求める問題に帰着される。

$$D(A, B) = \min_{xy(1) \cdots xy(N)} \sum_{i=1}^{N} d(i, xy(i))$$ \hspace{1cm} (10)$$

但し、

$$xy(i-1) \in XY'(xy(i))$$ \hspace{1cm} (11)$$

ここで $XY'(xy(i))$ は $xy(i)$ に隣接可能な $xy(i-1)$ の集合であり、その要素は $xy(i)$ と単調連続性 (2), (5) により決定される。例えば図3 (a) の $xy(i)$ に対する $XY'(xy(i))$ は、$xy(i)$ を同図 (b) のように x および y 方向へ分解したものである。これを $x(i)$, $y(i)$ とすれば、同図 (c) の灰色の部分に含まれる $x(i-1)$, $y(i-1)$ を x, y 成分とする $xy(i-1)$ の集合である。

$$d(i, xy(i)) = \sum_{j=1}^{N} |a(i, j) - b(x(i, j), y(i, j))|$$ \hspace{1cm} (12)$$

2.4 動的計画法による解法 (基本アルゴリズム)

局所ひずみパターン $xy(i)$ の最適系列は、DP により厳密に求めることができる。Bellman 理論の定式化[15]では、i が段階、$xy(i)$ が状態、$xy(i) \in XY'(xy(i)) \rightarrow xy(i)$ が状態遷移、$xy(i)$ の選択が決定に相当する。これに基づいて構成した、画像全体として最適な二元連続2次元ワープを求めるアルゴリズム（以後、基本アルゴリズム）を以下に示す。

（1） 初期状態

for all $xy \in XY(1)$

$$g(1, xy) = d(1, xy)$$

（2） DP 適化式

for $i := 2$ to N

for all $xy \in XY(i)$

$$g(i, xy) = d(i, xy)$$

$$+ \min_{xy' \in XY'(xy)} g(i-1, xy')$$ \hspace{1cm} (13)$$

（3） 終了

$$D(A, B) = \min_{xy \in XY(N)} g(N, xy)$$

終了後、バックトラックを行うことで最適な二元連続2次元ワープが求まる。

2.5 Levinらの手法との比較

本手法と Levinらの手法[14]の本質的な違いは連続性条件の有無である。すなわち Levinらの手法では連続性条件

$$x(i-1, j) \leq x(i, j)$$ \hspace{1cm} (14)$$

$$y(i, j-1) \leq y(i, j)$$ \hspace{1cm} (15)$$

のみが用いられ、連続性は考慮されていない。この違
いは以下に述べるようにワークの自由度，計算量およびメモリ量に影響する。

単調性条件（14），（15）はA上に接続する画素のワーク後の相対的な位置関係を制限するものであるが，その間の距離は制限しない。すなわちLevinらの手法ではパターンの位相が保存される保証がない。このため至るところで不連続なワークが起こり，過変形が生じる。例えば図4のA，Bの場合，Levinらの手法ではすべて\(D(A,B)=0\)となる。一方，本手法ではA

次に両手法の計算量およびメモリ量を比較する。二節の基本アルゴリズムの単純化計算回数は\(\sum_i |XY(i)| = O(N|XY|)\)となる。ここで\(XY = \bigcup_i XY(i)\)であり，\(|\cdot|\)は集合の要素数を表す。Levin

\(M = N + M\)のとき，\(|XY|\)はそれぞれ\(O(N^2N)，O(N\cdot 9^N)\)となる。図5に\(M = N\)のときの両手法の\(|XY|\)の数値シミュレーションによる測定値を示す。漸化式内部の計算量に比例する\(|XY(i)(xy(i))|\)は，Levinらの手法（図3）では\(O(N^2N)\)となり，本手法（図3）では\(O(9^N)\)となる。よって総計算量はそれぞれ\(O(4N^4)，O(2\cdot 9^N)\)となり，依然として指数オーダーであるが本手法の方が格段に少なく済む。メモリ量も，Levinらの手法が\(2|XY(i)| = O(N^2N)\)であるのに対し，本手法の方が\(2|XY(i)| = O(N\cdot 9^N)\)と少ない。これらの差異はすべて連続性条件の有無による。

このように本論文の2次元ワークは，Levinらの手法に欠如していた重要な制約条件である連続性を絞ることで，実用性を高め，計算量を低減している。

3. 枝刈による効率化

前節で述べたように，本手法でワークを求めるための計算量およびメモリ量は，Levinらの手法（14）より大幅に少ないが，依然として\(N\)に関して指数オーダーで増加する。よって現実的なサイズの画像に本手法を適用するには更にそれを低減する必要がある。この問題に対し本論文では枝刈法（16）の導入を検討する。枝刈法は，最適路としての可能性が低いと判断されただものを以後の処理から除外することで探索空間を圧縮し，計算量とメモリ量の低減を同時に実現できる効率化法である。以下では枝刈の導入により多項式時間で準最適解が求まるアルゴリズムを説明する（17）。

単調連続性により，\(xy(i-1)\)とそれに隣接可能な\(xy(i)\)の\(j\)における差分\((x(i,j)-x(i-1,j))，y(i,j)-y(i-1,j))\)は，\(xy(i-1)，xy(i)\)の形状とは無関係に\({2,1,0}\)，\({1,0,1}\)で表される9種類のいずれかとなる。逆にこの差分\(N\)個の列と\(xy(i-1)\)を用意すれば，隣接可能な\(xy(i)\)が一つ定まる。こうした差分の列の全部は，各ノードがそれぞれ9種類の差分の一つに対応するノードをもつような深さ\(N\)の9分木によって表現できる。すなわちこの9分木の根から葉までの\(9^N\)本の道により，\(xy(i-1)\)に隣接可能な\(xy(i)\)の全部が表現される。この9分木を各\(g(i-1,xy(i-1))\)を根としてそれぞれ自己射し，それぞれの木について並列的に枝を伸ばしていく（図6）。

![Image](https://example.com/image.png)

図4 Levinらの手法（14）で距離\(D(A,B)=0\)となる画素対の例

図5 局所ひずみパターンの総数\(|XY|\)

図6 枝刈法による多項式時間アルゴリズム

Fig.4 Image pairs for which distance \(D(A,B)=0\) by Levin et al.'s method [14].

Fig.5 The number of local warp patterns.

Fig.6 Pruning technique.
ここで、木の深さ \(j \) を一つ増やすことに、累積距離値

\[
g(i-1, xy(i-1)) + \sum_{k=1}^{j} |a(i,k) - b(x(i,k), y(i,k))|
\]

が最小の \(R \) 個のノードだけを残す枝刈り処理を行う。この処理を \(j = N \) まで繰り返した後、同じ \(xy(i) \) を表す葉のうち最小の累積距離をもつものを選択することで、第 \(i \) 段での処理が終了する。第 \(i \) 段での計算量は、画素間距離加算 \(O(N \cdot R) \)、枝刈基準決定 \(O(N \cdot R_0) \)、および \(j = N \) での最小値選択 \(O(N \cdot R^2) \) の和となる。画像全体ではこの処理が \(N \) 回繰り返され、端点 \(O(N^2 \cdot R^2) \) で準最適な 2 次元ワープが求まる。メモリ量も \(O(N \cdot R) \) に改善される。

枝刈りの効果を見るために、\([0, 1]\) の一様乱数で作成した画像 100 組を対象として、準最適な \(D(A, B) \) の最適値からのずれの大きさ、および準最適解を求めるための計算時間（Sun Ultra1 使用）を実測した。最適解を求めるために \(N = M = 6 \) とした。結果を図 7 に示す。ビーム幅 \(R \) を減少させれば計算時間を単調に短縮でき、逆に \(R \) を増加させれば近似精度を単調に向かうことができる。このように近似精度と計算時間はトレードオフの関係にあるので、タスクや実行環境に応じて \(R \) を適宜設定すればよい。

4. 実験および考察

4.1 実験 1

図 8 に 5 組の画像間の準最適な単調連続 2 次元ワープを示す。図の各行は左より、\(B, (x(i, j), y(i, j)) \) を表すメッセージを \(B \) 上に重ねたもの、\(B, A \) である。

サンプル画像はすべて \(N = M = 32, 256 \) 階調である。ビーム幅 \(R \) は計算時間の制約から 1000 とし、また \(w = 5 \) とした。このときの平均計算時間は約 280 秒であった。メッセージの構造は準連続性をもつ 2 次元ワープが現実していることがわかるが、部分的に極端な変形が起きていることもわかる。この原因には、1) 枝刈による最適解からのずれ、および 2) 局所的な制約条件と画素値に基づく評価関数だけではパターンの大局的構造を保存するには不十分であること、が考えられる。

そこで \(A \) 上のパターンと \(B \) 上のパターンの大局的構造は似ており、そのため最適なワープによる変形量は少ないと仮定する。この仮定をペナルティの形を評価関数に組み込めば、パターンの大局的構造を保存するワープが求まりやすくなる。同時にそのようなワープに対応する経路のコストが相対的に小さくなり、枝刈による最適解からのずれを抑えることができる。次式は正則化 [18] の概念と似たものである。ここでは次式をペナルティとして用いる。

\[
P_1(xy(i), xy(i-1))
\]
= \sum_{j=1}^{N} \left(|p_{i,j}^x| + |q_{i,j}^x| + |p_{i,j}^y| + |q_{i,j}^y| \right)

(16)

ここで，

\[p_{i,j}^x = x(i, j) - x(i, j - 1) \]
\[p_{i,j}^y = y(i, j) - y(i, j - 1) \]
\[q_{i,j}^x = x(i, j) - x(i - 1, j) \]
\[q_{i,j}^y = y(i, j) - y(i - 1, j) \]

更に得られたワープの細部を観察すると，図 10 に示すような折返しが発生していることがわかる。これは現在用いている単調性条件が，本来すべての方向について満たされるべき単調性の局所的かつ離散的近似であることに起因する。この折返しを避けるために，

4 点 \((i,j), (i-1,j), (i-1,j-1), (i,j-1)\) がワープ後に構成する四辺形の面の向きを判定し，反転と判断された場合は以後の探索から除外する方法が考えられる。しかしビーム径 \(R\) が小さい場合，残っている探索経路がこの判定ですべて除外されてしまう恐れがあり，検出とは相性が悪い。そこで四辺形の反転の度合を反転部分の面積で表し，それに応じたペナルティを課すことで反転を回避する。

\[P_2(xy(i), xy(i-1)) = \sum_{j=2}^{N} \left\{ \kappa(q_{i,j}^x p_{i,j}^y - q_{i,j}^y p_{i,j}^x) + \kappa(q_{i,j}^x p_{i-1,j}^y - q_{i,j}^y p_{i-1,j}^x) + \kappa(q_{i,j}^y p_{i,j}^x - q_{i,j}^x p_{i,j}^y) + \kappa(q_{i,j}^y p_{i-1,j}^x - q_{i,j}^x p_{i-1,j}^y) \right\} \]

(17)

ここで

\[\kappa(n) = \begin{cases} 0 & \text{if } n \geq 0 \\ -n & \text{otherwise} \end{cases} \]

以上のペナルティ \(P_1, P_2\) を導入すると，漸化式 (13) は次式のように変更される。

\[g(i, xy) = \min_{xy' \in X^y(xy)} (d(i, xy) + \alpha P_1(xy, xy') + \beta P_2(xy, xy') + g(i - 1, xy')) \]

\[\alpha, \beta \] は正定数とする。図 9 にこれからペナルティ (\(\alpha = 10, \beta = 100\)) を導入したときの結果を示す。ここで

\(\begin{array}{c}
A \\
B \\
\end{array}\)

Fig. 9 Experimental results of monotonic and continuous warp with penalties.

\(\begin{array}{c}
A \\
B \\
\end{array}\)

Fig. 10 Violation of monotony.

サンプル画像 \(A, B\) および \(R, w\) は前実験と同じとした。すべてのサンプルについて \(\tilde{B}\) と \(A\) の形状はほぼ一致しており，大局的構造を保存しようとするペナルティ \(P_1\) の有効性が示されている。また背景部などの画素値の微小な変動に不感となる効果があることもわかる。更にペナルティ \(P_2\) の効果も加わって，細部での折返しもほとんど見られなくなっている。以上のが結果から，検出により大幅に探索空問を圧縮しても，ペナルティの導入により精度良く単調連続 2 次元ワープが求まることが確認された。

4.2 実験 2

本節では本手法の形変追従能力を確認する実験を行
う。そのためあらかじめ画素の対応関係が既知の画像対を用いる。画像 B および A ($N = M = 32$) は次式で用いて生成した。

$$ b(x, y) = C \sqrt{(x - M/2)^2 + (y - M/2)^2}/4 $$ \hspace{1cm} (20)

$$ a(i, j) = b(\bar{x}(i, j), \bar{y}(i, j)) $$ \hspace{1cm} (21)

ここで C は画素の輝度値を [0, 255] の範囲に正規化するための正定数である。\bar{x}, \bar{y} には次式を用いた。

$$ \begin{align*}
\bar{x}(i, j) &= i - tf_i \\
\bar{y}(i, j) &= j - tf_j \\
\bar{x}(i, j) &= i - (i' \cos \theta - j' \sin \theta - i')f_i \\
\bar{y}(i, j) &= j - (i' \sin \theta + j' \cos \theta - j')f_j \\
\bar{x}(i, j) &= i - (i' - j'/s)f_i \\
\bar{y}(i, j) &= j - (j' - j'/s)f_j
\end{align*} $$

ここで $i' = i - N/2$, $j' = j - N/2$, $f_i = \sin(i\pi/N)$, $f_j = \sin(j\pi/N)$ である。f_i, f_j は変形を包絡内に収めるために用いた。A の例を図 11 に示す。変形追従能力の評価基準として、変位抽出誤差 ϵ [1] を用いた。

$$ \epsilon = 1/N^2 \sum_{i=1}^{N} \sum_{j=1}^{N} \sqrt{(x(i, j) - \bar{x}(i, j))^2 + (y(i, j) - \bar{y}(i, j))^2} $$ \hspace{1cm} (22)

今回用いた変形パラメータの範囲では、\bar{x}, \bar{y} は単調連続性 (2) ～ (5) を満たしていた。すなわちすべての場合で $D(A, B) = 0$, $\epsilon = 0$ となる最適ワープが存在する。言い換えれば本手法の基本アルゴリズムはこのような変形追従する能力を理論上もっている。

図 12 に、$R = 1000$, $w = \infty$, $\beta = 100$ という条件のもと，α および変形パラメータ t, θ, s を変えながら，ϵ を測定した結果を示す。$\alpha = \infty$ は変形を行わないテンプレートマッチングに相当する。結果より，$\alpha \leq 1$ のとき，平行移動，回転，拡大／縮小のほとんどの場合において変位抽出誤差 ϵ を平均 1 像素以下にできることがわかり，本手法の変形追従能力が実験的にも確認できた。$\alpha = 10$ とすると，変形追従能力が落ちることがわかる。これはパナルティ P_t がワープの変位量を少なくするためのエネルギーであることから説明できる。なお $\alpha \neq 0$ のとき，変形を全く行わない場合でも $\epsilon \neq 0$ となっているが，ともに評価関数
5. す び

本研究は，1次元-1次元DPマッチングの2次元への拡張を目標として開始された。冒頭に述べたように，DPを用いた2次元画像間の非線形なワープの構成法としては，本手法以外にもいくつかの手法が提案されている。しかしそれらの多くは，ワープの自由度が少なく解の最適性が十分でない手法であった。これに対し，本論文では，2次元的な自由度をもたながら画像全体としての解の最適性を保証でき，かつ単調連続性を保存する2次元ワープ法の基本アルゴリズムを示した。更に現実的なサイズの画像の扱いを可能にするための枠組みによる計算量の大幅な低減法について述べ，また極端な変形を避けるためには，ベナルティの適用が有効かを実験により示した。

本手法はさまざまな応用が考えられる。例えば，2次元ワープを用いてマッティング系を構成する場合，その対象で自然に発生するパターンのさまざまな変形への追従能力を残すことができ，いかに適変形を防ぐかが課題となる。これに対し，DPに基づく本手法は，評価関数，特微量，およびベナルティの選択の幅が広く，かなり細かい調整ができるため，この課題への対処が容易であると期待される。

文 献

（平成3年9月22日受付，10年1月22日再受付）

内田 誠一（学生員）

平 9 九大・工・電子産，平 9 国立大学院大学修士課程（情報工）入学後，同大学院工学研究科博士前期課程入学，現在に至る。音声の認識，合成，画像パターン解析に関する研究に従事，日本音響学会，情報処理学会各

会員。

追江 博昭（正員）

昭 41 九大工・制御系，昭 43 九州大学大学院修士課程（電子）入学，同年日本電気株式会社入社，平 1，九大に帰り，現在システム情報科学研究所知能システム学専攻教授，工博。音声認識および画像パターン解析の研究に従事，IEEE ASSP Senior Award，平 2，本会業績賞，平 2，本会業績賞，平 4，本会業績賞，平 4，日本音響学会，情報処理学会各会員，

1258