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Abstract

We try to link elastic matching with a statistical dis-
crimination framework to overcome the overfitting problem
which often degrades the performance of elastic matching-
based online character recognizers. In the proposed tech-
nique, elastic matching is used just as an extractor of a fea-
ture vector representing the difference between input and
reference patterns. Then quadratic discrimination is per-
formed under the assumption that the feature vector is gov-
erned by a Gaussian distribution. The result of a recog-
nition experiment on UNIPEN database (Train-R01/V07,
1a) showed that the proposed technique can attain a high
recognition rate (97.95%) and outperforms a recent elastic
matching-based recognizer.

1. Introduction

Elastic matching is often employed in online character
recognition for establishing sample point correspondence
between input and reference patterns. The functions of elas-
tic matching are (i) the adjustment of the difference in pat-
tern length (i.e., the number of sample points) and (ii) the
minimization of the difference in feature values (e.g., xy-
coordinate feature and directional feature). Dynamic pro-
gramming (DP) matching is a classic elastic matching tech-
nique [1, 2, 3] and still very popular because of its merits.
For example, DP matching algorithms can provide globally
optimal matching with only O(IJ) computations, where I
and J are the length of reference and input patterns, respec-
tively. In conventional DP matching-based recognizers, a
matching cost obtained as a by-product of their matching
optimization procedure is directly used as a discriminant
function.

Although DP matching and other elastic matching-
based recognizers generally perform well, they often suffer
from misrecognitions due to overfitting, which is the phe-
nomenon that the distance between the reference pattern of
an incorrect category and an input pattern is underestimated
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Figure 1. Overview of the proposed tech-
nique.

by unnatural matching. For example, “1” and “7” are some-
times misrecognized because elastic matching compensates
the difference of the length of their beginning parts.

One possible remedy against the overfitting problem is
the incorporation of probabilistic/statistical techniques. Sta-
tistical DP [4] and hidden Markov model (HMM) [5, 6, 7]
are probabilistic extensions of DP and can avoid the over-
fitting by regulating the probability of feature values. Al-
though they often outperform naive DP techniques, they
cannot exclude all overfittings because their Markovian
property allows to regulate only a “local” and “individual”
probability of the feature value at each sample point. Thus,
those techniques cannot regulate a “global” and “mutual”
probability of whole sample points.

In this paper, we try to link elastic matching with sta-
tistical discrimination framework to overcome the overfit-
ting problem. In the proposed technique, elastic match-
ing is considered as a feature extraction procedure (and its
matching cost is disregarded). Specifically, elastic match-
ing is only used to provide a difference vector composed of
the difference values between every corresponding sample
point. Thus, the difference vector captures “global” fea-
ture of the input pattern (relative to the reference pattern).
Then, Bayes discrimination is performed under the assump-
tion that the difference vector is governed by a Gaussian



distribution whose mean and covariance are estimated em-
pirically in advance. For elastic matching results in overfit-
ting, its difference vector will deviate from the distribution.
Thus, the a posteriori probability of the difference vector
will become a small value, and the misrecognition due to
the overfitting will be reduced by the proposed technique.
Figure 1 is the diagram of the proposed technique, where
MQDF (modified quadratic discriminant function [8]) is a
practical version of QDF, which is a Bayesian discriminant
function for the patterns having Gaussian distribution.

Another contribution of the paper is the derivation of
eigen-deformations of online character patterns. Eigen-
deformations are the promising representation of the fre-
quent deformations of online characters and produced as a
by-product of QDF. In this paper, we just observe the eigen-
deformations and suggest that they will be useful for devel-
oping some novel recognizer in future.

2. DP matching and Overfitting

2.1. DP matching

Let Rc = r1, r2, . . . , ri, . . . , rI denote the refer-
ence pattern of category c ∈ [1, 2, . . . , C] and E =
e1, e2, . . . , ej , . . . , eJ denote an input pattern. The vec-
tors ri and ej are composed of x-coordinate, y-coordinate,
and local direction, and denoted as r i = (Xi, Yi, Θi)T and
ej = (xj , yj , θj)T . Although ri and I should be denoted
like rc,i and Ic, simpler notations are used whenever there
is no confusion.

The problem of the elastic matching between two pat-
terns Rc and E is defined as the following constrained op-
timization problem.
[Objective function]

1
I

I∑
i=1

∥∥ri − ej(i)

∥∥ → minimize (1)

[Control variables]

j(1), . . . , j(i), . . . , j(I)
[Constraint] ⎧⎨

⎩
j(i) − j(i − 1) ∈ {0, 1, 2}
j(1) = 1
j(I) = J

The notation ‖x‖ is the Euclidean norm of vector x. This
optimization problem can be solved effectively by a DP al-
gorithm (whose detail are omitted here).

2.2. Overfitting

In many conventional online character recognition meth-
ods, the minimum value of the objective function (1), i.e.,

DDP(Rc, E) = min
j(1),...,j(i),...,j(I)

1
I

I∑
i=1

∥∥ri − ej(i)

∥∥ (2)

reference : "3"
input        : "3"

reference : "7"
input        : "3"

> DDP = 0.740DDP = 0.896

Figure 2. Example of misrecognitions due to
overfitting.

has been directly employed as their discriminant functions.
This will be because the value DDP is a deformation-
tolerant distance between Rc and E.

The recognition based on DDP, however, suffers from
overfitting. A misrecognition due to the overfitting is shown
in Fig. 2, where the input pattern “3” is misrecognized as
“7” with DDP underestimated by the unnatural matching.
Such overfitting is caused by the regardlessness of category-
dependent deformation tendencies. In fact, the deformation
represented in the matching between “7” and “3” will be
very rare for the category “7”.

3. Quadratic Discrimination of Online Charac-
ters

3.1. Feature extraction — difference vector

In the proposed technique, a statistical discrimination
framework using distribution of a new feature vector rep-
resenting a global feature of the input pattern is employed
to overcome the overfitting. This feature vector is called dif-
ference vector and derived from the result of DP matching.
Accordingly, DP matching is just used as a feature extractor
and DDP is disregarded here.

The 3I-dimensional difference vector of E can be ob-
tained by using j(1), . . . , j(I), which is the optimal match-
ing between two patterns Rc and E, namely

v =
(
(X1 − xj(1), Y1 − yj(1), Θ1 − θj(1)), . . . ,
(Xi − xj(i), Yi − yj(i), Θi − θj(i)), . . . ,

(XI − xj(I), YI − yj(I), ΘI − θj(I))
)T

. (3)

This difference vector represents the deformation of E from
the standard shape Rc. In the following discussion, we will
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Figure 3. Reference pattern deformed by the
first two eigen-deformations ux,y

c,1 , ux,y
c,2 of “2”

and “6”.

use subvectors vx,y and vd defined as

vx,y =
(
(X1 − xj(1), Y1 − yj(1)), . . . ,
(Xi − xj(i), Yi − yj(i)), . . . ,

(XI − xj(I), YI − yj(I))
)T

(4)

vd = (Θ1 − θj(1), . . . ,

Θi − θj(i), . . . , ΘI − θj(I))T . (5)

3.2. Quadratic Discriminant Function

Under the assumption that the difference vectors have
a Gaussian distribution, it is well known that their Bayes
discrimination is reduced to a QDF, defined as

Dtot(Rc, E) = (v − vc)T Σ−1
c (v − vc)

+ log |Σc| + 3I log 2π, (6)

where vc and Σc are the mean and the covariance matrix
of v of category c, respectively. The last term of the right
side of the equation cannot be omitted here because 3I , the
dimensionality of v, is different for every category c.

Hereafter, the xy-coordinate feature is assumed to be in-
dependent of the directional feature for decreasing the di-
mension of Σc. Under the assumption, (6) can be divided

into the discriminant function Dpos for the positional fea-
ture and Ddir for the directional feature, i.e.,

Dtot(Rc, E) = Dpos(Rc, E) + Ddir(Rc, E), (7)

where

Dpos(Rc, E) = (vx,y − vx,y
c )T (Σx,y

c )−1(vx,y − vx,y
c )

+ log |Σx,y
c | + 2I log 2π

=
2I∑

m=1

1
λx,y

c,m
((vx,y − vx,y

c )T ux,y
c,m)2

+ log
2I∏

m=1

λx,y
c,m + 2I log 2π. (8)

The matrix Σx,y
c is the 2I × 2I covariance matrix estimated

by the subvector vx,y between the training samples of cate-
gory c and Rc. The vector ux,y

c,m and the value λx,y
c,m are its

eigenvector and eigenvalue, respectively.
It is well known that the estimation errors of higher-

order eigenvalues are amplified in (8). Thus, in practice,
the modified quadratic discriminant function (MQDF) [8] is
employed, where the higher-order eigenvalues λx,y

c,m (m =
Mx,y + 1, . . . , 2I) are replaced by λx,y

c,Mx,y+1, i.e.,

Dpos(Rc, E)

∼ 1
λx,y

c,Mx,y+1

‖vx,y − vx,y
c ‖2

+
Mx,y∑
m=1

(
1

λx,y
c,m

− 1
λx,y

c,Mx,y

)
((vx,y − vx,y

c )T ux,y
c,m)2

+ log

{
(λx,y

c,Mx,y+1)
2I−Mx,y

Mx,y∏
m=1

λx,y
c,m

}

+2I log 2π. (9)

While various methods for determining the parameter
Mx,y can be considered, the smallest M x,y which satisfy∑Mx,y

m=1 λx,y
c,m/

∑2I
m=1 λx,y

c,m > μx,y was used in the recog-
nition experiment of Section 5. The threshold μx,y is opti-
mized by recognition experiment using training data.

The function Ddir can be derived in the same manner by
changing vx,y to vd, Σx,y

c to Σd
c , and so on.

4. Eigen-deformations

The eigenvector ux,y
c,m is a principal axis of the distri-

bution of the difference vectors {vx,y} in feature space.
Therefore, a lower order ux,y

c,m represents a frequent defor-
mation of category c. Hereafter, ux,y

c,m is called (positional)
eigen-deformations of online character.

Figure 3 shows reference patterns of “2” and “6” de-
formed by the first two positional eigen-deformations ux,y

c,1



and ux,y
c,2 . From this figure, deformations frequently ob-

served in actual characters were detected as primary eigen-
deformations. The first eigen-deformation of “6” represents
the vertical variation of loop part, and the second one repre-
sents the horizontal variation of the loop part.

Any online character pattern of the category c will lie
on the subspace spanned by these eigen-deformations. This
fact will lead a new framework of online character recog-
nition. (See also [9, 10]. Especially in [10], the eigen-
deformations of handprinted characters are exploited ac-
cording to the fact.)

5. Experimental Results

In this section, the recognition result by the quadratic
discrimination of Section 3 is provided.

5.1 Dataset

About 16,000 isolated online digit samples from
UNIPEN [11, 12] Train-R01/V07 database (1a) were used
in our experiment. In this experiment, intractable samples
(e.g., mislabeled samples and preprocessing error) was not
cleaned off.

The database was divided into three data sets by using
the software called utils2compareHWR [13, 14], which is
recommended for dividing the UNIPEN database into train-
ing/test data. Multi-writer environment that writers of train-
ing data are not independent of writers of test data was em-
ployed on dividing data. Among three data sets, two data
sets were used as training data, and the remaining one data
set was used as test data. The following experimental result
shows the average of the three trials by the cross-validation
method. The training samples were used for the generation
of reference patterns in Section 5.2, and the estimation of
covariance matrix (i.e., eigen-deformations). The test sam-
ples were used as recognition tasks.

All samples were preprocessed as follows. First, each
pen-up part was connected by a line segment in order to
eliminate stroke-number variations. Thus, all samples sub-
jected to the experiment were one-stroke characters. Then,
their size was normalized to 128×128, keeping aspect ra-
tio. Finally, resampling was performed so that the distance
between consecutive sample points became constant.

5.2 Reference patterns

Reference patterns Rc were generated automatically us-
ing CLUSTER [15, 16, 17], which is a clustering method
similar to k-means. By repeating split and merge of clusters,
CLUSTER provides suboptimal k clusters (k = 1, . . . , K).

The number of clusters for each digit, i.e., k, was decided
by the following parameter T , which is commonly used for
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Figure 4. Recognition rate.

all digits. While the number k specifies the number of ref-
erence patterns representing the digit, it also affects the es-
timation of the covariance matrices. This is because, in the
experiment, the training samples belonging to the cth clus-
ter were used for the estimation of a covariance matrix Σ c.
Considering those facts, we set k at k̃ which is the smallest
k satisfying Qk ≥ T , where Qk is the size of the smallest
clusters among k clusters. This implies that the parameter
T specifies the minimum number of the training samples
for estimating a single covariance matrix. In the following,
the number of total clusters, that is C =

∑
all digits k̃, was

controlled by changing T .

5.3 Recognition result

Figure 4 shows the recognition rates by Dtot as a func-
tion of C. The recognition rates by DDP, Dpos, and Ddir

are also shown in the figure for comparison.The highest re-
sult, the recognition rate attained by Dtot was 97.95%(C =
160). In [4] it is reported that statistical dynamic time warp-
ing (SDTW), which is a recent and sophisticated version of
DP matching, attained 97.10% on the same data set, when
C = 150. In the same condition, our technique attained
97.85%(C = 150) and thus outperforms the SDTW.



reference : "3"
input        : "3"
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Dpos = 362.1

Dtot  = 401.8

Figure 5. Sample correctly recognized by the
proposed technique.

From Fig. 4, the recognition rates of Dtot were always
higher than those of DDP. This can be considered that the
misrecognitions due to overfitting were suppressed by QDF.

The recognition rates attained by Dtot were always
higher than that by Dpos and Ddir. Figure 5 shows one
of improves. The input pattern “3” of Fig. 5 was misrecog-
nized as “1” by Dpos, because the difference of positional
feature was small due to the unusual smoothness of the cur-
vature around the middle part of the input pattern “3”. The
difference of directional feature, however, becomes larger,
and finally Dtot could provide correct result. Thus, Dpos

and Ddir are collaborative and should be used together in
QDF.

A PC (Intel(R) Xeon(TM) CPU 3.06GHz) required 23.6
msec at C = 160. For recognizing a single character, that
is, the proposed technique is practical from the view point
of computational complexity.

6. Conclusion

A new online character recognition technique was pro-
posed, where an elastic matching technique is combined
with a statistical discrimination framework. In the proposed
technique, elastic matching is used just as an extractor of
the feature vector representing the difference between in-
put and reference patterns. Then quadratic discrimination
is performed under the assumption that the feature vector is
governed by a Gaussian distribution. The result of a recog-
nition experiment on UNIPEN database (Train-R01/V07,
1a) showed that the proposed technique could attain a high
recognition rate (97.95%) and outperformed a recent elas-
tic matching-based recognizer of [4]. During the deriva-
tion of the proposed technique, eigen-deformations were
also introduced as the promising representation of the defor-
mations of online characters. It was suggested that eigen-
deformations can be utilized for developing another new

recognizer by future work.

Acknowledgement: This work was supported in part by
SECOM Science and Technology Foundation and Ministry
of Internal Affairs and Communications in Japan under
Strategic Information and Communications R&D Promo-
tion Programme (SCOPE).

References

[1] K. Ikeda, T. Yamamura, Y. Mitamura, S. Fujiwara, Y. Tom-
inaga, and T. Kiyono, “On-line recognition of handwritten
characters utilizing positional and stroke vector sequence,”
Pattern Recognition, vol. 13, no. 3, pp. 191-206, 1981.

[2] K. Yoshida and H. Sakoe, “Online handwritten character
recognition for a personal computer system”, IEEE Trans.
Consumer Electronics, vol. CE-28, no. 3, pp. 202-209, 1982.

[3] D. J. Burr, “Designing a handwriting reader”, IEEE Trans.
PAMI, vol. PAMI-5, no. 5, pp. 554-559, 1983.

[4] C. Bahlmann and H. Burkhardt, “The writer independent on-
line handwriting recognition system flog on hand and cluster
generative statistical dynamic time warping,” IEEE Trans.
PAMI, vol. 26, no. 3, pp. 299-310, 2004.

[5] R. Nag, K. H. Wong, and F. Fallside, “Script recognition us-
ing hidden Markov models,” Proc. ICASSP, pp. 2071–2074,
vol. 3 of 4, 1986.

[6] J. Hu, M.-K. Brown, and W. Turin, “HMM based on-
line handwriting recognition,” IEEE Trans. PAMI, vol. 18,
no. 10, pp. 1039-1045, 1996.

[7] M. Nakai, N. Akira, H. Shimodaira, and S. Sagayama, “Sub-
stroke approach to HMM-based on-line Kanji handwriting
recognition,” Proc. ICDAR, pp. 491–495, 2001.

[8] F. Kimura, K. Takashina, S. Tsuruoka, “Modified quadratic
discriminant functions and the application to Chinese char-
acter recognition,” IEEE Trans. PAMI, vol. 9, no. 1, pp. 149-
153, 1987.

[9] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Ac-
tive shape models - their training and application,” Comput.
Vis. Image Und., vol. 61, no. 1, pp. 38–59, Jan. 1995.

[10] S. Uchida and H. Sakoe, “Handwritten character recognition
using elastic matching based on a class-dependent deforma-
tion model,” Proc. ICDAR, vol. 1 of 2, pp. 163–167, 2003.

[11] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
S. Janet, ”UNIPEN project of on-line data exchange and rec-
ognizer benchmarks,” Proc. ICPR, pp. 29-33, 1994.

[12] http://hwr.nici.kun.nl/unipen/

[13] E. H. Ratzlaff, “Methods, report and survey for the compar-
ison of diverse isolated character recognition results on the
UNIPEN database,” Proc. ICDAR, pp. 623-628, 2003.

[14] http://www.alphaworks.ibm.com/tech/
comparehwr

[15] A. K. Jain and R. C. Dubes, Algorithms for clustering data,
Prentice Hall, 1988.

[16] R. Dubes and A. K. Jain , “Clustering techniques: the user
dilemma” Pattern Recognit., vol. 8, pp.247-268, 1976.

[17] S. D. Connell and A. K. Jain, “Template-based online char-
acter recognition,” Pattern Recognit., vol. 34, no. 1, pp. 1-13,
2001.


