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Abstract

This paper proposes a new dynamic time warping

(DTW) method, called non-Markovian DTW. In the con-

ventional DTW, the warping function is optimized gen-

erally by dynamic programming (DP) subject to some

Markovian constraints which restrict the relationship

between neighboring time points. In contrast, the non-

Markovian DTW can introduce non-Markovian con-

straints for dealing with the relationship between points

with a large time interval. This new and promising abil-

ity of DTW is realized by using graph cut as the op-

timizer of the warping function instead of DP. Specifi-

cally, the conventional DTW problem is first converted

as an equivalent minimum cut problem on a graph and

then edges representing the non-Markovian constraints

are added to the graph. An experiment on online char-

acter recognition showed the advantage of using non-

Markovian constraints during DTW.

1. Introduction

Dynamic time warping (DTW) between two sequen-

tial patterns, X = x1, . . . , xt, . . . , xT and Y = y1,

. . . , yτ , . . . , yT , is formulated as the optimization prob-

lem of the warping function τ = ut, which is shown

as a path in Fig. 1 (a) and matches xt to yτ (= yut
).

DTW is often called dynamic programming matching

or elastic matching and has widely been employed for

compensating nonlinear timing fluctuation in sequential

patterns, such as speech, handwriting, gesture, human

activity, etc.

DTW is often implemented with some constraints in

order to exclude unexpected warping functions which

result in unnatural matching, or so-called over-fitting.

A typical constraint is the monotonicity and continuity

constraint, expressed as 0 ≤ ut+1−ut ≤ ǫ, where ǫ is a

small integer (often 2). This constraint realizes a mono-

tonic and continuous (i.e., smooth) warping function as

shown in Fig. 1 (a).

An important fact about the monotonicity and con-

tinuity constraint is that it is a Markovian constraint,

which restricts the relationship between ut and ut+1.

It is well-known that under Markovian constraints the

globally optimal warping function can be derived by dy-

namic programming (DP) efficiently with O(T 2) com-

putations. In other words, Markovian constraints have

been forcibly employed for utilizing DP as the solver of

the DTW problem. In fact, most DTW problems have

been solved by DP (or its stochastic extension, HMM)

under some Markovian constraints.

However, many sequential patterns have non-

Markovian characteristics. Consider a handwriting

trajectory of “0”. The position of its ending point

should be constrained by the starting point in order

to form a closed-circular shape of “0”. This example

clearly shows that our writing process is obviously non-

Markovian. In fact, we can find non-Markovian char-

acteristics everywhere — we are often referring to not

only the latest point but also long past points. Simi-

larly, it is highly probable that nonlinear timing fluc-

tuation also has some non-Markovian characteristics.

For dealing this characteristics, we need to incorporate

non-Markovian constraints which restrict the relation-

ship between ut and ut+n (n > 1). Unfortunately, as

discussed above, the conventional DP-based DTW can-

not deal with them1.

The main contribution of this paper is to realize

a non-Markovian DTW, which can incorporate non-

Markovian constraints, such as α ≤ ut+n − ut ≤ β.

To the authors’ best knowledge, this is the first realiza-

tion of the non-Markovian DTW. The key idea for this

realization is to use graph cut instead of DP. In the pro-

posed method, the DTW problem is re-formulated as a

graph cut problem. Since graph cut does not assume any

Markovian characteristics of the problem, it is possible

to incorporate non-Markovian constraints in addition to

the Markovian constraints.

2. Related Work

The proposed DTW method employs graph cut in-

stead of DP. Graph cut can also obtain a globally op-

timal solution efficiently and thus has been applied to

1 Precisely speaking, it is “theoretically” possible to deal with

the relationship between ut and ut+n in DP by treating n variables

(ut, ut+1, . . . ut+n) as a single high-dimensional variable. How-

ever, the computational complexity of the resulting DP algorithm be-

comes an exponential order of n [1] and thus the algorithm is compu-

tationally intractable even with small n.
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Figure 1. (a) Warping function τ = ut.

(b) Markovian constraint. (c) Range limi-

tation.(d) Non-Markovian constraint.

various optimization problems [2] including matching

tasks between 1D patterns [3, 4], 2D patterns [5] and 3D

patterns [6]. Coefficients for unary and binary terms in

graph cut can be learned statistically from training pat-

terns [7, 8, 9]. These facts enable graph cut to deal with

recognition tasks [9, 5] where DP is often used. Since

its optimization principle is totally different from DP,

it has a potential to avoid the limitation of DP, such as

Markovian characteristics. However, most of the pre-

vious approaches using graph cut cannot handle non-

Markovian characteristics in matching or recognition

tasks [3, 4, 5, 6].

Ishikawa et al. [10] have applied graph cut to stereo

matching problem, which is essentially the same as

DTW. The proposed method extends their method by

newly introducing non-Markovian constraints. As em-

phasized in Section 1, non-Markovian characteristics

can be observed everywhere and therefore this promis-

ing extension will give a new research direction to DTW

and other nonlinear matching problems.

3. Problem Formulation of DTW

Let us start with a conventional DTW where only a

Markovian constraint is imposed. The Markovian DTW

is formulated as the minimization problem of the fol-

lowing objective function F with respect to the warping

function U = u1, . . . , uT :

minF = min
u1,...,uT

αt,t+1≤ut+1−ut≤βt,t+1

T∑

t=1

dt(ut) (1)

where dt(ut) denotes the local matching cost between

xt and yut
. As noted before, the monotonicity and

continuity constraint αt,t+1 ≤ ut+1 − ut ≤ βt,t+1

is a Markovian constraint. Since in the conventional

DTW the lower bound αt,t+1 = 0 and the upper bound

βt,t+1 = ǫ = 2 are fixed for all t, this constraint can

be rewritten simply as 0 ≤ ut+1 − ut ≤ 2; however,

for the latter discussion, we use the above generalized

notation. The boundary conditions u1 = 1, uT = T are

also assumed during the minimization.

It is noteworthy that the Markovian constraint is

rather lax. Figure 1 (b) shows the area of possible paths

under the constraint after the path goes through a point

(t, ut). This figure indicates that the relationship be-

tween ut and ut+n becomes weaker for larger n and

thus the conventional Markovian DTW is too flexible to

avoid over-fitting. In the conventional DTW, therefore,

a warp range limitation (|t − ut| ≤ δ) of Fig. 1 (c) has

often been imposed to restrict the warping function.

4. DTW as a Graph Cut Problem

The globally optimal solution of (1) can be obtained

by not only DP but also graph cut as proved in [10]. As

noted before, DP treats the DTW problem as a path op-

timization problem on a t–τ plane as shown in Fig. 2(a).

In contrast, the graph cut treats the DTW problem as a

minimum cut problem on a directed graph G = (V,E)
of (b). Hereafter, using Fig. 2, we will show how this

graph (b) is derived from (a).

The nodes V are comprised of two special nodes

(source and sink) and other nodes, each of which cor-

responds to a grid point (t, τ) on the 2D-space of (a).

Specifically, as shown in (c), for every grid point (t, τ),
a pair of nodes (v0t,τ , v

1
t,τ ) are prepared in G.

The edges E are comprised of several groups hav-

ing different roles. First, the edge between v0t,τ and v1t,τ
has a weight dt(τ). Consequently, the cost for the path

in (a) is equivalent to the cost for the cut in (c). Sec-

ond, the edges connected to sink or source nodes in (d)

have an infinity weight and represent boundary condi-

tions. For example, the two cuts in (d) represent the

cases of u1 = 3 6= 1 and uT = 2 6= T , respectively.

They never happen because they have an infinite cost

by cutting those edges. Third, the edges in (e) and (f)

also have an infinite weight and play a role to exclude

unexpected cuts (like “NG” cuts in these figures).

The monotonicity and continuity constraint with the

lower bound αt,t+1 and the upper bound βt,t+1 is also

represented by edges with an infinite weight. The edges

in (g) are for αt,t+1 = 1 (where, for a simpler visibility,

αt,t+1 is fixed at 1 instead of 0) and the edges in (h) are

for βt,t+1 = 2.

Now we have all the elements, that is, nodes and

edges of the graph G of (b). In short, the nodes and

the edges of (c) are prepared for representing the local

costs and the edges of (d)-(h) are prepared for regulating

possible cuts equivalent to possible paths. Thus, we can
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Figure 2. (a) DTW as a path optimization problem. (b) DTW as a graph cut problem. (c) Edges

for di(ui). (d) Edges for boundary constraints. (e) and (f) Edges for excluding unexpected cuts.
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Figure 3. Non-Markovian constraint

αt,t+n = 1, βt,t+n = 2 as edges of G.

understand the minimum cut of (b) is equivalent to the

optimal path of (a). In other words, the solution by some

graph cut algorithms is exactly the same as the solution

by DP. Most graph cut algorithms, such as Edmonds-

Karp algorithm, require polynomial-order computations

and are still efficient for Markovian DTW.

5. Introducing Non-Markovian Constraints

As described in Section 1, non-Markovian con-

straints restrict the relationship between ut and ut+n

(n > 1). Figure 1 (d) shows an example of non-

Markovian constraint. It forces a warping function tak-

ing the value τ at t to pass through one of four values as

ut+n at t+n. It is important that such a non-Markovian

constraint 2 is written as αt,t+n ≤ ut+n − ut ≤ βt,t+n.

It is also important that this constraint does not restrict

2In the extra page of our camera-ready version, we will show an

extended version of non-Markovian constraints, which depend not

only on t and n but also on τ .

ut+1, . . . , ut+n−1 directly.

By comparison between Fig. 1 (b) and (d), we can

expect that non-Markovian constraints can regulate the

warping function in more various ways. In fact, non-

Markovian constraints are very flexible; for example, it

is possible to put such a constraint between t = 4 and 9
but not between t = 7 and 11. In Section 6, we will in-

troduce a learning method to design the non-Markovian

constraints automatically for a specific DTW task.

Similar to the Markovian constraints, non-

Markovian constraints are also introduced as edges

of graph G. If we want to restrict the relationship

between ut and ut+n, we need to put several edges

with an infinite weight between nodes at t and

t + n. Figure 3 shows a non-Markovian constraint

1 = αt,t+n ≤ ut+n − ut ≤ βt,t+n = 2.

By obtaining the minimum cut of the resulting graph,

we can have the globally optimal solution of non-

Markovian DTW. We do not need to make any special

care for the graph cut algorithm; just like the Marko-

vian case, the algorithm can provide the optimal solu-

tion for the graph with edges for non-Markovian con-

straints. An important fact is that the introduction of

non-Markovian constraints affect computational com-

plexity of DTW just linearly. Considering Footnote 1,

this is a distinct advantage of the proposed method over

the conventional DP-based implementation.

6. Learning Non-Markovian Constraints

The purpose of introducing non-Markovian con-

straints for sequential pattern recognition with DTW is

generally to allow all possible warping functions be-
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Table 1. Recognition rate (%).

Average Class “6” Class “1”

Markovian 88.7 83.3 73.3
Non-Markovian 89.4 86.3 74.7

tween patterns of the same class and to exclude the other

warping functions for suppressing over-fitting by DTW.

Based on this fact, the non-Markovian constraints can

be simply learned as follows. First, the allowable

warping functions U are collected by the conventional

Markovian DTW between patterns of the class c. Then,

for each timing pair t and t+n, the maximum and min-

imum values of ut+n − ut are set as αt,t+n, βt,t+n for

non-Markovian DTW of class c.

7. Experimental Results

To evaluate the effect of non-Markovian DTW, an

online character recognition experiment was conducted

using the Ethem Alpaydin Digit dataset which is com-

prised of online handwritten digit samples (“0”– “9”).

Each sample was simply represented as a sequence of

two-dimensional pen-tip coordinate. The length T was

about 50. The dataset was decomposed into 700 train-

ing samples per class and 300 test samples (X) per

class. From the training samples, 21 reference patterns

(1∼4 samples per class) were determined by a cluster-

ing method. Mahalanobis distance was used for the lo-

cal cost dt(ut). The cost minF was calculated between

a test sample and each of the 21 reference patterns, and

the class of the minimum cost reference pattern was

considered as the recognition result. Note that for im-

proving the recognition accuracy of the conventional

Markovian DTW, a warp range limitation (|t−ut| ≤ δ)

was introduced with the optimized parameter δ.

Computational time is less than 5ms for each non-

Markovian DTW. This proves the high efficiency of the

proposed method, if we consider the fact that the DP-

based implementation is computationally intractable

even around T = 10.

Table 1 shows that non-Markovian DTW could pro-

vide higher recognition accuracy than conventional

Markovian DTW. Figure 4 (a) shows two improved ex-

amples, “6” and “1”, which were misrecognized as “8”

and “9” respectively by the Markovian DTW. The warp-

ing function U by the Markovian DTW (b) shows a

steep slope around its beginning part for matching pat-

terns of different classes. This slope is allowed by the

Markovian slope constraint (even with the warp range

limitation) and then causes over-fitting. In contrast,

this steep slope was not allowed in the non-Markovian

constraints. As shown in (c), the warping function

violates the non-Markovian constraints, for example,

t

t
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t

t
u
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4 8 10  19
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Figure 4. Two improved examples. (a) Test

sample X. (b) Result by Markovian DTW.

(c) Non-Markovian constraints.

(α4,10, β4,10) and (α8,19, β8,19) of class “8”. Con-

sequently, the steep slope, i.e., over-fitting, was sup-

pressed in the non-Markovian DTW and these two test

samples were correctly recognized.

8. Conclusion

A non-Markovian dynamic time warping (DTW) has

been proposed. Use of graph cut, instead of dynamic

programming (DP), as the optimizer of the warping

function allows us to introduce non-Markovian con-

straints, which can restrict the relationship between

points with a large time interval during DTW, still with

polynomial computations. The usefulness of the non-

Markovian DTW has been shown through an online

character recognition experiment.
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