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Abstract. In this paper, we show that the truly two-dimensional elas-
tic image matching problem can be solved analytically using dynamic
programming (DP) in polynomial time if the problem is formulated as
a maximum a posteriori problem using Gaussian distributions for the
likelihood and prior. After giving the derivation of the analytical DP
matching algorithm, we evaluate its performance on handwritten char-
acter images containing various nonlinear deformations, and compare
other elastic image matching methods.

1 Introduction

Elastic matching is one of the most fundamental tools for pattern recognition and
computer vision. For one-dimensional (i.e., sequential) patterns, elastic match-
ing detects and compensates, for example, any temporal fluctuations. For two-
dimensional patterns (i.e., images), elastic matching also detects and compen-
sates various geometric deformations. Owing to these abilities, elastic matching
has been applied to recognition tasks, deformation analysis, pattern alignment,
image compression, stereo, and so on.

Elastic matching is formulated as an optimization problem of a warping func-
tion between two patterns. As such, the property of elastic matching is deter-
mined by the problem formulation and the optimization method. These two
factors are not independent — the optimization method is selected according to
the formulation. For example, if the problem is formulated as a combinatorial
optimization problem, a combinatorial optimization method will be used.

Throughout this paper, we focus on dynamic programming (DP) as the opti-
mization method for elastic image matching. As detailed later, DP has promising
properties for elastic matching. In fact, DP has undoubtedly been the most es-
tablished optimization method for sequential patterns since the late 1960s.

For elastic image matching, however, DP has not been fully utilized. Consider
a combinatorial optimization problem of elastic image matching with a truly two-
dimensional warping ability. Unfortunately, as this is an NP-hard problem, DP
(as well as other optimizers) cannot solve the problem in polynomial time. Con-
sequently, the warping ability is severely restricted in reducing the computation.
This limitation results in so-called pseudo 2D elastic matching that cannot com-
pensate vertical and horizontal deformations simultaneously. In other words, it
cannot even compensate rotation.

In this paper, a truly two-dimensional polynomial-time DP matching method,
called analytical DP matching, is presented, which is very different from the
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conventional combinatorial DP matching. The performance thereof is evaluated
qualitatively and quantitatively on handwritten character images. The key idea
is to formulate the elastic image matching problem as a maximum a posteriori
(MAP) problem with a Gaussian likelihood and a Gaussian prior. The quadratic
nature of the Gaussian distributions helps us to derive an analytical solution
using DP. Consequently, analytical DP matching can obtain the globally opti-
mal solution of the MAP problem with a polynomial-time computation while
retaining the truly two-dimensional warping ability.

1.1 Related Work

DP [1–3] has been applied to various tasks in pattern recognition and computer
vision. Nowadays, DP is considered a classic optimization method and there are
several fascinating alternatives, such as graph cut, belief propagation (or message
passing), and so on [4]. Nevertheless, many researchers still choose DP for their
current tasks because of its conciseness, versatility, and ability to obtain the
globally optimal solution. In fact, DP has recently been employed in studies on
tracking [5], stereo [6–8], and elastic image matching [9].

Elastic matching is a typical application of DP. As previously noted, the
DP-based matching algorithm, called DP matching or dynamic time warping,
has been widely and successfully applied to sequential pattern recognition tasks
since the late 1960s. In fact, DP matching (and its stochastic extension, i.e.,
Hidden Markov Models) is a standard in speech recognition [10, 11] and on-line
character recognition [12].

It is quite natural to try to extend the sequential DP matching algorithm
to a two-dimensional one. Several researchers [13, 14] have developed DP algo-
rithms for truly two-dimensional elastic image matching, but have encountered
the inherent NP-hardness of the problem [15].

Because of this computational intractability, conventional DP-based elastic
image matching algorithms employ various approximation strategies, the most
popular of which is the limitation of matching flexibility. In fact, we can find
many pseudo 2D elastic matching algorithms, such as [9]. Another strategy is
partial omission of the mutual dependency between 4-adjacent pixels (e.g., the
tree representation in [6, 8, 16]). It is also popular for introducing local search
techniques, such as pruning (or beam-search) and coarse-to-fine strategies [17], at
the cost of global optimality. Notwithstanding these strategies, there is currently
no practical DP algorithm that can provide both globally optimal and truly two-
dimensional elastic matching.

All the conventional DP-based elastic matching algorithms (apart from four
exceptions noted later) have always used DP as a combinatorial breadth-first
search method, i.e., a combinatorial optimization method. This is confirmed by
the fact that a very recent survey [3] reported only combinatorial (i.e., discrete)
DP algorithms. Even if an optimization problem is originally formulated as a
continuous variational problem, it is discretized and then solved by DP as a
combinatorial optimization problem [2, 10].
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This fact is somewhat peculiar since DP was originally developed as a contin-
uous optimization method to obtain the solution efficiently using an analytical
strategy [1]. Such analytical solutions have rarely been utilized even in other com-
puter vision and pattern recognition problems. To the best of our knowledge,
there are only four studies in which DP has been utilized as an analytical solver.
Angel [18] used analytical DP for smooth interpolation. Serra and Berthod [20]
and Munich and Perona [21] used it for nonlinear alignment of one-dimensional
patterns. Finally, Uchida et al. [22] used it for object tracking.

1.2 Our Contribution

Our main contribution is regenerating the classic DP-based elastic matching
algorithm, the combinatorial breadth-first search method that has not been con-
sidered since its introduction in the late 1960s. The proposed algorithm, called
analytical DP matching, does not include the combinatorial search that be-
comes intractable for elastic image matching problems. Instead, it utilizes DP to
provide an analytical solution, thereby successfully reducing the computational
complexity from an exponential order to a polynomial one.

The analytical DP matching algorithm is derived by formulating the elastic
matching problem as a MAP problem with Gaussian distributions. The quadratic
nature of the Gaussian distributions enables the globally optimal solution of the
MAP problem to be obtained with O(I4) computations for I × I images. Since
this is an analytical solution, it is not necessary to consider either convergence
or the initial value issue. It is noteworthy that this algorithm has the potential
to be combined with other optimization methods based on a sequential decision
process, such as tree-reweighted message passing [19].

Since the problem is formulated as a quadratic optimization problem, it can
be solved analytically by a more popular closed-form solution, precisely like
least-mean-square (LMS) problems. In this case, the solution requires O(I6)
computations to deal with a large (O(I2) × O(I2)) matrix. In contrast, our
analytical DP matching algorithm utilizes a column-wise recursive formulation
that provides a more efficient solution with O(I4) computations and a far smaller
(O(I)×O(I)) matrix.

2 Formulation of Elastic Image Matching Problem

2.1 Elastic Image Matching as a MAP Problem

Elastic image matching between a pair of I × I images 1, X = {xi,j |i, j =
1, . . . , I} and Y = {yu,v|u, v = 1, . . . , I}, is an optimization problem of the
warping function W = {wi,j}, where wi,j = (ui,j , vi,j)

T denotes that pixel
(i, j)T onX corresponds to (ui,j , vi,j)

T on Y . Hereafter, we assume the boundary
conditions, u1,j = 1, uI,j = I, vi,1 = 1, vi,I = I.

1 We can easily extend the following discussion to arbitrary size images.
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We formulate the optimization problem of W as the following MAP problem:

W = argmax
W

P (W |X,Y ). (1)

According to Bayes’ rule,

argmax
W

P (W |X,Y ) = argmax
W

P (X,Y |W )P (W ), (2)

where P (X,Y |W ) is a likelihood that evaluates the similarity between X and
Y under the warping function W , and P (W ) is a prior of W .

We assume the following Gaussian likelihood P (X,Y |W ):

P (X,Y |W ) =
∏
i,j

N (wi,j ; µi,j ,Σi,j), (3)

where N (·) is a two-dimensional Gaussian distribution and µi,j and Σi,j are its

mean vector and covariance matrix, respectively. Each pixel (i, j)T on X has its
own Gaussian distribution on Y , which evaluates the pixel-wise similarity be-
tween (i, j)T andwi,j = (ui,j , vi,j)

T . The parameters µi,j andΣi,j are estimated
before optimizing W . As the prior P (W ), we use a smoothness function 2,

P (W ) =
∏
i,j

N (wi,j −wi,j−1; 0, λI) · N (wi,j −wi−1,j ; 0, λI). (4)

The first and second Gaussian distributions in (4) evaluate intra- and inter-
column smoothness, respectively. If the constant λ is set to a larger value, the
smoothing effect by the prior becomes weaker. By taking the logarithm of (2),
our objective function F (W ) is derived as follows:

F (W ) ≡ λ [logP (X,Y |W ) + logP (W )] (5)

We now introduce the matrix-vector formulation [24], or column-wise formu-
lation, whereW is treated as a sequence of 2I-dimensional vectors,w1, . . . ,wi, . . . ,wI ,
where wi = (wi,1,wi,2, . . . ,wi,j , . . . ,wi,I−1,wi,I)

T . Then the objective function
F (W ) becomes

F (W ) = F (w1, . . . ,wI) = λ
I∑

i=1

di(wi) +
I∑

i=1

η(wi) +
I∑

i=2

ρ(wi,wi−1). (6)

The first term of (6) is the log likelihood and is defined as

di(wi) =
I∑

j=1

wT
i,jP i,jwi,j + qT

i,jwi,j + ri,j = wT
i P iwi + qT

i wi + ri, (7)

2 It is possible to use an arbitrary covariance matrix in these priors instead of λI. It is
also possible to use different covariance matrices at different (i, j)T . Although such
priors can represent various deformation tendencies, we use the most general prior
of (4) throughout this paper to simplify our algorithm derivation.
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where P i = diag[P i,1, . . . ,P i,j , . . . ,P i,I ], qi = (qi,1, . . . , qi,j , . . . , qi,I)
T , and

ri =
∑I

i=1 ri,j , with these coefficients derived from logP (X,Y |W ), i.e., Σi,j

and µi,j . Since Σi,j and µi,j are pre-determined as noted above, the coefficients
P i, qi, and ri are also pre-determined. The second and third terms of (6) are
the log priors for intra- and inter-column smoothness, respectively:

η(wi) = wT
i Hwi, (8)

ρ(wi,wi−1) = (wi −wi−1)
2, (9)

where H is a constant matrix.
The minimization problem of (6) is a quadratic (i.e., convex) problem and

can thus be analytically solved like LMS problems using a system of O(I2)
linear equations derived by partial differentiation of (6) by each of 2I2 variables
{(ui,j , vi,j)}. The solution, however, requires O(I6) computations, because we
must deal with a large non-diagonal O(I2) × O(I2) coefficient matrix for the
system of linear equations. In the following section, we derive a more efficient
O(I4) algorithm based on DP.

3 Analytical DP Matching

3.1 Derivation of DP Recursion

Similar to Angel [18], we introduce function fi(wi−1), which is defined as

fi(wi−1) = min
wi,...,wI

I∑
k=i

[λdk(wk) + η(wk) + ρ(wk,wk−1)] . (10)

Note that the minimum value of F is represented using f2 as follows:

minF (W ) = min
w1

[λd1(w1)+η(w1)+f2(w1)] = λd1(w1)+η(w1)+f2(w1), (11)

where w1 denotes w1 giving the minimum of the first equation.
According to the principle of optimality [1], (10) can be rewritten as the

following recursive equation, known as DP recursion.

fi(wi−1) = min
wi

[λdi(wi) + η(wi) + ρ(wi,wi−1) + fi+1(wi)] . (12)

This recursion indicates that the two-dimensional optimization problem of elastic
image matching can be solved as the sequential optimization problemw1, . . . ,wi,
. . . ,wI by virtue of the column-wise formulation.

If we use the conventional combinatorial DP algorithm, we first need to
discretize wi as a 2I-dimensional integer vector, and then calculate the recur-
sion (12) for all possible wi from i = 1 to I. Clearly, this is computationally
intractable because the number of possible wi is an exponential order of I. In-
stead, we use DP as an analytical solver while fully utilizing the fact that the
terms of (12) are quadratic in nature and thus differentiable with respect to wi.
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Input: Coefficients: {P i, qi, ri | i = 1, . . . , I} and λ ∈ ℜ+.
Output: W = w1, . . . ,wi, . . . ,wI and minF .
Step 1: Initial condition Obtain (AI , bI , cI).
Step 2: DP recursion

For i = I − 1 downto 2: Obtain (Ai, bi, ci) from (Ai+1, bi+1, ci+1) by (15).
Step 3: Termination

Obtain w1 from ∂[λd1(w1) + η(w1) + f2(w1)]/∂w1 = 0.
minF = λd1(w1) + η(w1) + f2(w1).

Step 4: Backtrack For i = 2 to I: Obtain wi by (14) with wi−1 = wi−1.

Fig. 1. Pseudo-code for analytical DP matching.

3.2 Solution using Analytical DP

The most important fact in deriving the proposed method is that all the di,
as well as η and ρ are quadratic functions of wi as indicated by (7), (8), and
(9), respectively, and thus differentiable with respect to wi. This means that
fi(wi−1) is also a quadratic function 3 and can therefore be represented as

fi(wi−1) = wT
i−1Aiwi−1 + bTi wi−1 + ci, (13)

where Ai is a 2I × 2I matrix, bi is a 2I-dimensional vector, and ci is a scalar,
all of which are determined by optimizing {wi}. By substituting (13) into (12),
and then differentiating with respect to wi, the optimal wi = wi, which gives
the minimum of (12), is derived as:

wi = [λP i +Ai+1 +H + I]
−1

(wi−1 − (λqi + bi+1)/2) , (14)

where I is the identity matrix.
By substituting wi into (12) and then comparing with (13), we have the

recursive procedure for obtaining (Ai, bi, ci) from (Ai+1, bi+1, ci+1) as follows:

Ai = I − [λP i +Ai+1 +H + I]
−1

bi = [I −Ai](λqi + bi+1)
ci = −(λqi + bi+1)

T bi/4 + ci+1 + λri

 . (15)

The complete algorithm for analytical DP matching is summarized in Fig. 1.
After finding the initial value (AI , bI , cI), the value (Ai, bi, ci) is calculated from
(Ai+1, bi+1, ci+1) for i = I − 1 downto 2 according to the recursive procedure
(15). While the derivation of (AI , bI , cI) is not detailed here, it can be derived by
comparing (10) with (13) at i = I. The optimal correspondence wi is calculated
repeatedly by (14) from w1. It should be noted that the optimal correspondence
{wi} is the globally optimal solution of (6). The computational complexity of
analytical DP matching is O(I4), i.e., a polynomial order of I, and is dominated
by the O(I3) computations to obtain the 2I × 2I inverse matrix in (15). Since

3 This can be proved inductively.
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Fig. 2. Comparison of computation times for analytical DP matching and conventional
combinatorial DP matching.

there are generally fewer than O(I4) computations for P i, qi, and ri, the total
number of computations is still O(I4).

Figure 2 shows the average computation times for analytical DP matching
at I = 16, 32, . . . , 256 on a personal computer. This graph coincides with the
theoretical computational complexity, i.e., O(I4). The conventional truly two-
dimensional DP matching algorithm [14] required 41 s at I = 8 and halted at
I = 10 owing to lack of memory. These comparative results show that analytical
DP matching is far more efficient than the conventional DP matching algorithm.

4 Performance Evaluation
For a qualitative and quantitative performance evaluation, several experiments
were carried out using handwritten digit images from MNIST [23]. MNIST com-
prises 60,000 training samples and 10,000 test samples. Each image is gray-scale
with size 28× 28.

There are several benefits of using handwritten character images for perfor-
mance evaluation. (i) Elastic matching of character images is often more ambigu-
ous and difficult than general object images because character images are binary
patterns showing only curves (i.e., strokes). (ii) Through a character recogni-
tion experiment using the elastic matching distance (minF ), the “over-fitting”
phenomenon can be strictly observed. This is because character images from
different classes often become similar to each other through over-fitting, and
this can be detected as a misrecognition result. (iii) Since handwritten charac-
ter images have typically been the target of elastic image matching, there are
many past results of recognition experiments using the same database, especially
MNIST.

Etohfs method [25] was used to determine P i,j , qi,j , and ri,j . Figure 3(a)

shows the pixel-wise log-likelihood functions (i.e., wT
i,jP i,jwi,j + qT

i,jwi,j + ri,j)
for a pair of “2”. It is noteworthy that the major axis direction is often similar to
the direction of the character stroke. For example, consider the correspondence
illustrated by the thick orange arrow in Fig. 3(a). This indicates that point
(i, j)T , which lies on the “/”-shaped stroke on X, has a high probability of
being matched to point (u, v)T along the “/”-shaped stroke of Y .

Figure 3(b) shows the results of analytical DP matching on several hand-
written character image pairs. The images at either end are Y and X, while
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Fig. 3. (a) Pixel-wise log-likelihood for a pair of X and Y . For better visibility, only
nine functions are plotted separately. (b) Matching results for different λ values.
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(c)Fig. 4. (a) Visualization of matching accuracy using difference image. (b) Effect of
global optimization. (c) Recognition rate of 10,000 handwritten digit images.

the other five images are the matching results Ỹ = {ywi,j |i, j = 1, . . . , I} for
five different values of λ. When λ = 0, the objective function is governed by
the smoothness prior η, ρ, and the boundary conditions. Thus, Ỹ = Y . As λ
increases, Ỹ becomes more similar to X.

Figure 4(a) visualizes the accuracy of the proposed algorithm using differ-

ence images between X and Ỹ . The fact that Ỹ ∼ X indicates that Y was
appropriately fitted to X. It also indicates that the matching flexibility is truly
two-dimensional.

Figure 4(b) compares the global optimization result using the proposed al-
gorithm with a local optimization result obtained by block matching. The latter
result is equivalent to (ûi,j , v̂i,j)

T , which was determined individually at each
block. (Thus, it is equivalent to the result obtained by IDM [9].) In Fig. 4(b),
the result of matching two images from the same class (“4”) is shown. Although
the warped images are similar to each other, the pixel correspondences are differ-
ent. The correspondence by block matching is somewhat scattered and excessive,
whereas that by the proposed algorithm is smooth. This result is also confirmed
by the other result, where block matching caused over-fitting between different
classes (“2” and “7”). For the quantitative performance evaluation, a recognition
experiment was carried out. Each of the 10,000 test samples (X) was matched
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to all the training samples (Y ) and their matching distances minF were used
for discrimination. The recognition result of X was finally determined using the
3-nearest neighbor method. The number of training samples was changed from
125 to 60,000, that is, all the training samples in MNIST.

For a comparative evaluation, IDM and P2DHMDM [9] were also used as
other promising elastic image matching methods. It was reported in [23] that
these methods achieved the best recognition performance on MNIST of all the
elastic image matching methods. Their discrimination was done under the same
condition 4 as the proposed algorithm. Figure 4(c) shows the recognition rates
using IDM, P2DHMDM, and the proposed algorithm. The proposed algorithm
outperforms the others especially with fewer training samples. This result indi-
cates that the proposed algorithm can match images with large differences, while
at the same time avoiding over-fitting.

5 Conclusion

An analytical DP matching algorithm was proposed for elastic image matching.
The proposed algorithm was derived by formulating the matching problem as
a MAP problem with a Gaussian likelihood and Gaussian priors. By virtue of
the quadratic nature of the Gaussian distributions, DP can be used as an an-
alytical solver that obtains the globally optimal solution of the MAP problem
with O(I4) computations for I × I images. On the other hand, if DP is used as
a conventional combinatorial solver, it requires an exponential number of com-
putations. The computational efficiency of the proposed algorithm was shown
through experimental results.

As the discussion in this paper is somewhat general, some specialization
would be necessary for each specific image matching problem. In particular, we
can apply the proposed algorithm to various images other than handwritten
character images. Use of a more sophisticated and less ambiguous pixel value,
such as a SIFT image [26], instead of the simple gray-scale value, would be useful
to obtain a more reliable pixel-wise likelihood. As noted previously, it is possible
to elaborate the prior to incorporate a pattern specific deformation tendency in
its covariance matrix. It is also possible to incorporate hard constraints to fixwi,j

at arbitrary pixels, like the boundary conditions, by virtue of a property of DP. In
other words, given sparse pixel-to-pixel correspondences (by, for example, SIFT
matching), the proposed method can provide the remaining correspondences
optimally.
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